Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác BCB'C' có
\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)
\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC
Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tự vé hình nhé.
Gọi M là trung điểm của BC
=> ME là đường trung tuyến ứng với cạnh huyền của tam giác vuông EBC => ME=MB=MC (1)
=> MF ...........................................................................................FBC => MF=MB=MC (2)
(1)(2) => ME=MF=MB=MC
=> 4 điểm E,F,B,C cùng thuộc dường tròn tâm M đường kính BC
b, Đường cao của đường tròn là gì hả bạn??
Tích cho mình nhé
Tý Giải tiếp nếu đè bài đúng
A B C A' B' C' Hình vẽ chỉ mang tính chất minh họa
Ta có : \(\frac{AH}{AA'}=\frac{S_{ABH}}{S_{ABA'}}=\frac{S_{ACH}}{S_{ACA'}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\) ( Tính chất dãy tỉ số bằng nhau, tỉ số diện tích )
Tương tự ta có :
\(\frac{BH}{BB'}=\frac{S_{AHB}+S_{BHC}}{S_{ABC}}\) , \(\frac{CH}{CC'}=\frac{S_{ACH}+S_{BHC}}{S_{SBC}}\)
Do đó :
\(\frac{AH}{AA'}+\frac{BH}{BB'}+\frac{CH}{CC'}=\frac{2\left(S_{ABH}+S_{AHC}+S_{BHC}\right)}{S_{ABC}}=\frac{2\cdot S_{ABC}}{S_{ABC}}=2\)
Vậy : \(\frac{AH}{AA'}+\frac{BH}{BB'}+\frac{CH}{CC'}=2\)