Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M O G N
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
A B C D M N P Q E F T S
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
A B C H M E F D K
Gọi BD và CK là đường cao của \(\Delta\)ABC.
Ta có: ^KEH+^KHE=900 (Do \(\Delta\)EKH vuông tại K)
Mà ^KHE+^MHC=900
=> ^KEH=^MHC hay ^MHC=^HEA
Xét \(\Delta\)EHA và \(\Delta\)HMC: ^HEA=^MHC; ^EAH=^HCM (Cùng phụ ^ABC)
=> \(\Delta\)EHA ~ \(\Delta\)HMC (g.g) => \(\frac{EH}{HM}=\frac{AH}{MC}\)(1)
Chứng minh tương tự, ta được: \(\Delta\)HFA ~ \(\Delta\)MHB (g.g) => \(\frac{FH}{HM}=\frac{AH}{BM}\)(2)
Từ (1) và (2) => \(\frac{EH}{HM}=\frac{FH}{HM}\)(Do MC=MB) => EH=FH => H là trung điểm của EF
Xét \(\Delta\)MEF: Trung tuyến MH. Lại có: MH\(\perp\)EF => \(\Delta\)MEF cân tại M (đpcm).
cho mình hỏi là góc EAH cùng phụ với góc ABC ở chỗ nào ạ ?
A B C M H I K N a) Ta có : góc HCB = góc BAH (1) vì cùng phụ với góc ABH
Dễ thấy góc HMB = góc IHN (cùng phụ với góc MHN)
Mà góc AHB + góc BHI = góc HMC + góc HMB = 1800
=> góc HMC = góc AHI (2)
Từ (1) và (2) suy ra đpcm
a) ED là đường TB ⇒ED//BC⇒EDBC⇒ED//BC⇒EDBC là hbh
b) Ta có EM là đường TB của ΔABNΔABN
⇒EM//AN⇒EM//KN⇒EM//AN⇒EM//KN
Vì N là trung điểm MC ⇒K⇒K là trung điểm EC
c) C/m tương tự được I là trung điểm BD
Ta có OI=OB2OI=OB2 (O là giao điểm trung tuyến , quên đưa vào hình )
DI=3OB4DI=3OB4
OI=OB4OI=OB4
Chưng minh tương tự được OK=OC4OK=OC4
Vì OIOB=OKOC=14OIOB=OKOC=14
⇒IK//BC⇒IKBC=14⇒IK//BC⇒IKBC=14
Gọi AD,BE,CF lần lượt là đường cao cảu tam giác ABC,mà H là trực tâm của tam giác ABC nên AD,BE,CF đồng quy tại H
Ta có:\(\widehat{HAM}=90^0-\widehat{AHE}=90^0-\widehat{BHD}=\widehat{KBH}\)
Ta lại có:\(\widehat{AHM}=90^0-\widehat{KHD}=\widehat{BKH}\)
Xét \(\Delta AHM\&\Delta BKH\)có:
\(\hept{\begin{cases}\widehat{HAM}=\widehat{KBH}\\\widehat{AHM}=\widehat{BKH}\end{cases}}\)
\(\Rightarrow\Delta HAM\)đồng dạng với \(\Delta BKH\left(g.g\right)\)(mk ko bt kí hiệu đồng dạng trong olm)
\(\Rightarrow\frac{AH}{BK}=\frac{HM}{HK}\)
\(CMTT:\Rightarrow\frac{AH}{KC}=\frac{HN}{HK}\)
Mà BK=KC\(\Rightarrow\frac{HM}{HK}=\frac{HN}{HK}\Rightarrow HM=HN\)
Suy ra HK là đường trung tuyến của tam giác NMK,mà HK cũng là đường cao của tam giác NMK
Suy ra tam giác NMK cân tại K(đpcm)