K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

Vì I,K lần lượt là trung điểm MP và MQ nên IK là đtb tg MPQ

\(\Rightarrow IK=\dfrac{1}{2}PQ=\dfrac{15}{2}\left(cm\right)\)

Bài 2:

b: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

K là trung điểm của GB

I là trung điểm của GC

Do đó: KI là đường trung bình của ΔGBC

Suy ra: KI//BC và \(KI=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra NM//KI và NM=KI

Xét tứ giác NMIK có 

NM//KI

NM=KI

Do đó: NMIK là hình bình hành

a: Xet tứ giác MPNQ có

I là trung điểm chung của MN và PQ

nên MPNQ là hình bình hành

b:M đối xứng K qua PQ

nên MK vuông góc với PQ tại trung điểm của MK

=>H là trung điểm của MK

Xét ΔMKN có MH/MK=MI/MN

nên HI//KN

=>KN vuông góc với KM

c: M đối xứng K qua PQ

nên QM=QK

=>QK=PN

Xét tứ giác PQNK có

PQ//NK

PN=QK

Do đó: PQNK là hình thang cân


a) O là trọng tâm tam giác đều ABC nên O là trực tâm của tam giác đó, do đó OB \(\perp\)AC,\(\perp\)AB , suy ra : OC\(//\)MP, OB \(//\)MQ
Tứ giác MIOK là hình bình hành vì có các cạnh đối song song.
b) Dễ thấy các tam giác :
\(\Delta MKC\approx\Delta MIB\left(g-g\right)\) , nên ...

Từ đó bạn giải tiếp nha

Muốn xem ảnh thì vào thống kê hỏi đáp của mình nha vi mình chưa phải là QTV nê chưa đăng được ảnh

Học tốt!

14 tháng 7 2018

 Bài này ko khó lắm đâu. Bạn chỉ cần nghĩ một chút thôi.

a,Nối A với C.

Xét tam giác BAC có: M là trung điểm của AB, N là trung điểm của BC

Suy ra: MN là đường trung bình của tam giác BAC

Nên MN song song với BC.(1)

Xét tam giác ACD có: P là trung điểm của CD và Q là trung điểm của AD.

Do đó: PQ là đường trung bình của tam giác ACD

Nên PQ song song với BC. (2)

Từ (1) và (2), ta có: MN song song với PQ.

b, Xét tam giác MQP có: I là trung điểm của MQ, K là trung điểm của MP

Vì thế IK là đường trung bình của tam giác MQP

Suy ra: IK song song với PQ.

Tương tự, KH là đường trung bình của tam giác MNP

Nên KH song song với MN.

Mà MN song song với PQ

Do đó: KH song song với PQ

Qua điểm K nằm ngoài đường thẳng PQ, có 2 đường thẳng IK,KH cùng song song với PQ nên theo tiên đề Ơclít , 3 điểm I,K,H thẳng hàng.

Chúc bạn học tốt.

a: Xét hình thang MNPQ có 

A là trung điểm của MQ

B là trung điểm của NP

Do đó: AB là đường trung bình của hình thang MNPQ

Suy ra: AB//MN//PQ

Xét ΔQMN có AI//MN

nên \(\dfrac{AI}{MN}=\dfrac{AQ}{QM}=\dfrac{1}{2}\left(1\right)\)

Xét ΔPMN có KB//MN

nên \(\dfrac{KB}{MN}=\dfrac{1}{2}\left(2\right)\)

Từ (1) và (2) suy ra AI=KB

18 tháng 12 2021

a: Xét ΔMNQ có 

A là trung điểm của MN

B là trung điểm của MQ

Do đó: AB là đường trung bình của ΔMNQ

Suy ra: AB//NQ và AB=NQ/2(1)

Xét ΔNPQ có

C là trung điểm của QP

D là trung điểm của NP

Do đó: CD là đường trung bình của ΔNPQ

Suy ra: CD//NQ và CD=NQ/2(2)

Từ (1) và (2) suy ra ABCD là hình bình hành