Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M H P K I N O E
a) C/m MH là phân giác góc IMK.
-Xét tam giác MNP có AH là đường cao, vừa là đường phân giác.
tức MH là phân giác góc NMP
hay Mh là phân giác IMK.
( Cách 2 :
Xét hai tam giác vuông MNH và MPH, có:
góc MNH = góc MPH ( tam giác MNP cân)
MN= MP ( tam giác MNP cân)
=> hai tam giác bằng nhau ( cạnh huyền - góc nhọn)
=> NMH =PMH
hay MH là phân giác IMK.)
b) IK // NP
mà NP vuông MH
=> IK vuông góc MH.
ta có tam giác vuông MOI = tam giác vuông MOK (c.g.c)
=> OI=OK
Vậy MH là trung trực IK
c)
Chứng minh tam giác OIH = tam giác EHN
=> HNE =IHO
ta có
OIH + OHI =90 độ
<=> OIH + HNE =90 độ
Suy ra IKN = 90 độ
Vậy tam giác IKN vuông tại K.
a, xét tma giác MNE và tam giác MPE có :
MN = MP và góc MNE = góc MPE do tam giác MNP cân tại M (Gt)
NE = EP do E là trđ của NP (gt)
=> tam giác MNE = tam giác MPE (c-g-c)
=> góc MEN = góc MEP (đn)
mà góc MEN + góc MEP = 180 (kb)
=> góc MEN = 90
=> MN _|_ NP và có M là trđ của PN (Gt)
=> ME là trung trực của NP (đn)
b, xét tam giác MKE và tam giác MHE có : ME chung
góc NME = góc PME do tam giác MNE = tam giác MPE (Câu a)
góc MKE = góc MHE = 90
=> tam giác MKE = tam giác MHE (ch-cgv)
=> MK = MH (đn)
=> tam giác MHK cân tại M (đn)
=> góc MKH = (180 - góc NMP) : 2 (tc)
tam giác MNP cân tại M (Gt) => góc MNP = (180 - góc NMP) : 2 (tc)
=> góc MKH = góc MNP mà 2 góc này đồng vị
=> KH // NP (đl)
a) Xét \(\Delta MNH\)và \(\Delta MPH\)có:
\(MN=MP\)(gt)
\(\widehat{MNH}=\widehat{MPH}\)(gt)
\(NH=PH\)(gt)
suy ra: \(\Delta MNH=\Delta MPH\)(c.g.c)
b) \(\Delta MNH=\Delta MPH\)
\(\Rightarrow\)\(\widehat{MHN}=\widehat{MHP}\)
mà \(\widehat{MHN}+\widehat{MHP}=180^0\)(kề bù)
\(\Rightarrow\)\(\widehat{MHN}=\widehat{MHP}=90^0\)
\(\Rightarrow\)\(MH\)\(\perp\)\(NP\)
a, Xét tam giác MNH và tam giác MPH có
MN=MP(gt)
NH=PH(gt)
MH chung
=> tam giác MNH=tam giác MPH (c.c.c)
b, Từ a : tam giác MNH = tam giác MPH => góc MHN =góc MHP
Mà góc MHN+góc MHP=180 độ (kề bù)=> Góc MNH=góc MHP =180:2=90 độ
=> MH vuông góc với NP
a) xét tam giác MHN và tam giác MHP có
\(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)
MN = MP ( tam giác MNP cân tại M)
MH chung
=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)
b) vì tam giác MHN = tam giác MHP (câu a)
=> \(\widehat{M1}\)= \(\widehat{M2}\)(2 góc tương ứng)
=> MH là tia phân giác của \(\widehat{NMP}\)
bạn tự vẽ hình nhé
a.
vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)
Xét tam giác MHN và tam giác MHP
có: MN-MP(CMT)
\(\widehat{N}\)=\(\widehat{P}\)(CMT)
MH là cạnh chung
\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)
=> Tam giác MHN= Tam giác MHP(ch-gn)
=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG) (1)
và NH=PH( 2 cạnh tương ứng)
mà H THUỘC NP=> NH=PH=1/2NP (3)
b. Vì H năm giữa N,P
=> MH nằm giữa MN và MP (2)
Từ (1) (2)=> MH là tia phân giác của góc NMP
c. Từ (3)=> NH=PH=1/2.12=6(cm)
Xét tam giác MNH có Góc H=90 độ
=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)
hay \(10^2=6^2+MH^2\)
=>\(MH^2=10^2-6^2\)
\(MH^2=64\)
=>MH=8(cm)
Chỉ còn vài tiếng nữa là mình nộp bài rồi, mong các bạn dành ra ít thời gian để giúp đỡ mình. Mình sẽ tích đúng cho các bạn, mình cảm ơn trước!!!!