Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta MKP\) vuông tại M
\(KP^2=KM^2+PM^2=\left(\frac{5}{2}\right)^2+4^2=22.25\Rightarrow KP=\sqrt{\frac{69}{2}}cm\) (1 )
Xét \(\Delta MNP\) vuông tại M
\(NP^2=MN^2+MP^2=5^2+4^2=\sqrt{41}\) (2)
Từ (1) và (2') => PN > KP
Tớ nghĩ là phải thêm bước \(PK=\sqrt{\frac{69}{2}}=\sqrt{35}cm\)
\(NP=\sqrt{41}cm\)
Ta có: \(\sqrt{41}>\sqrt{35,5}\) nên NP > PK
Cảm ơn cậu nhá
a: PN=10cm
b: Xét ΔPMK vuông tại M và ΔPEK vuông tại E có
PK chung
\(\widehat{MPK}=\widehat{EPK}\)
Do đó: ΔPMK=ΔPEK
c: Xét ΔMKD vuông tại M và ΔEKN vuông tại E có
KM=KE
\(\widehat{MKD}=\widehat{EKN}\)
DO đó: ΔMKD=ΔEKN
Suy ra: KD=KN
d: Ta có: PM+MD=PD
PE+EN=PN
mà PM=PE
và MD=EN
nên PD=PN
hayΔPDN cân tại P
Bạn có thể tham khảo ơn đây nhé :
https://olm.vn/hoi-dap/detail/238592362678.html
a) Xét \(\Delta MPH\)và \(\Delta ENH\)có:
HP = HN (H là trung điểm của NP)
\(\widehat{MHP}=\widehat{EHN}\)(2 góc đối đỉnh)
MH = HE (gt)
\(\Rightarrow\Delta MPH=\Delta ENH\left(c.g.c\right)\)
\(\Rightarrow MP=NE\)(2 cạnh tương ứng)
\(\widehat{PMH}=\widehat{NEH}\)(2 góc đối đỉnh)
Mà 2 góc này ở vị trí so le trong
=> MP // NE
b) Xét \(\Delta AMH\)và \(\Delta BEH\)có:
MH = HE (gt)
\(\widehat{AMH}=\widehat{BEH}\)(cm a)
MA = BE (gt)
\(\Rightarrow\Delta AMH=\Delta BEH\left(c.g.c\right)\)
\(\Rightarrow\widehat{AHM}=\widehat{BHE}\)(2 góc tương ứng)
Mà \(\widehat{BHE}+\widehat{BHM}=\widehat{MHE}=180^o\)
\(\Rightarrow\widehat{AHM}+\widehat{BHM}=\widehat{AHB}=180^o\)
=> 3 điểm A,H,B thẳng hàng
c) Xét \(\Delta NEH\)có:
\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)
\(\Rightarrow\widehat{NHE}+50^0+25^o=180^o\)
\(\Rightarrow\widehat{NHE}+75^o=180^o\)
\(\Rightarrow\widehat{NHE}=105^o\)
Vì góc NHE là góc ngoài của tam giác EKH
=> góc NHE = góc KEH + góc EKH
=> 105o = góc KEH + 90o
=> góc KEH = 15o
\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)
a) Xet tam giac MNK va tam giac MPK co:
Goc MKP = goc MKN = 90 do ( MK vuong goc voi NP ) (1)
MK ( canh chung ) (2)
MN = MP ( tam giac MNP can tai M ) (3)
Tu (1), (2), (3) => Tam giac MNK = tam giac MPK ( canh huyen - canh goc vuong )
b) Ta co: goc MNK = goc MPK ( 2 goc o day cua tam giac can MNP ) va
goc MPK + goc MPB = 180 do ( ke bu ); goc MNK + goc MNA = 180 do ( ke bu )
ma goc MPK = goc MNK ( cmt ) => goc MPB = goc MNA
Xet tam giac MNA va tam giac MPB co:
PB = NA ( gt ) (1)
MP = MN ( tam giac MNP can tai M ) (2)
goc MPB = goc MNA ( cmt ) (3)
Tu (1), (2) ,(3) => tam giac MNA = tam giac MPB ( c.g.c )
=> MA = MB ( 2 canh tuong ung )
c) Ta co: DE // AB ma goc MDE va goc MAB la 2 goc dong vi => goc MDE = goc MAB
MED MBA MED MBA
Vay tam giac MDE la tam giac can ( tam giac MDE co 2 goc bang nhau )
a: Xét ΔPAN có
PM là đường trung tuyến
PM là đường cao
DO đó: ΔPAN cân tại P
b: \(MP=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét ΔPNA có
PM là đường trung tuyến
NB là đường trung tuyến
PM cắt NB tại G
Do đó; G là trọng tâm của ΔPAN
Suy ra: PG=2/3PM=2(cm)