K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét \(\Delta MKP\) vuông tại M

\(KP^2=KM^2+PM^2=\left(\frac{5}{2}\right)^2+4^2=22.25\Rightarrow KP=\sqrt{\frac{69}{2}}cm\) (1 )

Xét \(\Delta MNP\) vuông tại M

\(NP^2=MN^2+MP^2=5^2+4^2=\sqrt{41}\) (2)

Từ (1) và (2') => PN > KP

8 tháng 5 2019

Tớ nghĩ là phải thêm bước \(PK=\sqrt{\frac{69}{2}}=\sqrt{35}cm\)

\(NP=\sqrt{41}cm\)

Ta có: \(\sqrt{41}>\sqrt{35,5}\) nên NP > PK

Cảm ơn cậu nhá hiuhiu

a: PN=10cm

b: Xét ΔPMK vuông tại M và ΔPEK vuông tại E có

PK chung

\(\widehat{MPK}=\widehat{EPK}\)

Do đó: ΔPMK=ΔPEK

c: Xét ΔMKD vuông tại M và ΔEKN vuông tại E có

KM=KE

\(\widehat{MKD}=\widehat{EKN}\)

DO đó: ΔMKD=ΔEKN

Suy ra: KD=KN

d: Ta có: PM+MD=PD

PE+EN=PN

mà PM=PE

và MD=EN

nên PD=PN

hayΔPDN cân tại P

Hình như đề bài thiếu nha bạn

22 tháng 4 2018

gfh gn

Bạn có thể tham khảo ơn đây nhé :

https://olm.vn/hoi-dap/detail/238592362678.html

a) Xét \(\Delta MPH\)và \(\Delta ENH\)có:

       HP = HN (H là trung điểm của NP)

       \(\widehat{MHP}=\widehat{EHN}\)(2 góc đối đỉnh)

        MH = HE (gt)

\(\Rightarrow\Delta MPH=\Delta ENH\left(c.g.c\right)\)

\(\Rightarrow MP=NE\)(2 cạnh tương ứng)

      \(\widehat{PMH}=\widehat{NEH}\)(2 góc đối đỉnh)

Mà 2 góc này ở vị trí so le trong

=> MP // NE
b) Xét \(\Delta AMH\)và \(\Delta BEH\)có:

    MH = HE (gt)

    \(\widehat{AMH}=\widehat{BEH}\)(cm a)

    MA = BE (gt)

\(\Rightarrow\Delta AMH=\Delta BEH\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHM}=\widehat{BHE}\)(2 góc tương ứng)

Mà \(\widehat{BHE}+\widehat{BHM}=\widehat{MHE}=180^o\)

\(\Rightarrow\widehat{AHM}+\widehat{BHM}=\widehat{AHB}=180^o\)

=> 3 điểm A,H,B thẳng hàng

c) Xét \(\Delta NEH\)có:

\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)

\(\Rightarrow\widehat{NHE}+50^0+25^o=180^o\)

\(\Rightarrow\widehat{NHE}+75^o=180^o\)

\(\Rightarrow\widehat{NHE}=105^o\)

Vì góc NHE là góc ngoài của tam giác EKH

=> góc NHE = góc KEH + góc EKH

=> 105o = góc KEH + 90o

=> góc KEH = 15o

\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)

6 tháng 4 2020

a) Xet tam giac MNK va tam giac MPK co:

Goc MKP = goc MKN = 90 do ( MK vuong goc voi NP )  (1)

MK ( canh chung )  (2)

MN = MP ( tam giac MNP can tai M )  (3)

Tu (1), (2), (3) => Tam giac MNK = tam giac MPK ( canh huyen - canh goc vuong )

b) Ta co: goc MNK = goc MPK ( 2 goc o day cua tam giac can MNP ) va 

goc MPK + goc MPB = 180 do ( ke bu ); goc MNK + goc MNA = 180 do ( ke bu )

ma goc MPK = goc MNK ( cmt ) => goc MPB = goc MNA

Xet tam giac MNA va tam giac MPB co:

PB = NA ( gt )  (1)

MP = MN ( tam giac MNP can tai M )  (2)

goc MPB = goc MNA ( cmt )  (3)

Tu (1), (2) ,(3) => tam giac MNA = tam giac MPB ( c.g.c )

=> MA = MB ( 2 canh tuong ung )

c) Ta co: DE // AB ma goc MDE va goc MAB la 2 goc dong vi => goc MDE = goc MAB

                                           MED            MBA                                       MED           MBA

Vay tam giac MDE la tam giac can ( tam giac MDE co 2 goc bang nhau )                                   

a: Xét ΔPAN có 

PM là đường trung tuyến

PM là đường cao

DO đó: ΔPAN cân tại P

b: \(MP=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét ΔPNA có 

PM là đường trung tuyến

NB là đường trung tuyến

PM cắt NB tại G

Do đó; G là trọng tâm của ΔPAN

Suy ra: PG=2/3PM=2(cm)