Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ sau:
M N P K I
Xét ΔNMI và ΔNKI có:
NI: Cạnh chung
\(\widehat{INM}=\widehat{INK}\) (gt)
NM = NK (gt)
=> ΔNMI = ΔNKI ( c-g-c)
=> IM = IK (2 cạnh tương ứng) (đpcm)
b) Vì ΔNMI = ΔNKI ( ý a)
=> \(\widehat{IMN}=\widehat{IKN}\) = 90o(2 góc tương ứng)
Trong ΔIKM có: \(\widehat{IKN}\) = 90o
=> ΔIKM vuông tại K (đpcm)
Bạn xem lại đề giúp mình nhé đề như bạn thì B trùng với M mất rồi
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
a: Xét ΔMND và ΔMPE có
MN=MP
\(\widehat{MND}=\widehat{MPE}\)
ND=PE
Do đó: ΔMND=ΔMPE
b: Xét ΔMNH vuông tại H và ΔMPK vuông tại K có
MN=MP
\(\widehat{HMN}=\widehat{KMP}\)
Do đó: ΔMNH=ΔMPK
Suy ra: NH=PK