Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác `MNPK` có :
\(\left\{{}\begin{matrix}IM=IK\\IN=IP\end{matrix}\right.\)
`=>` tứ giác `MNPK` là hình bình hành ( tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
`=> MN = PK ; MN` // `PK`
Xét tứ giác MNKP có
I là trung điểm của MK và NP
=>MNKP là hình bình hành
=>MN//PK và MN=PK
a ) Xét ◇DENF có :
Góc N = Góc F = Ê = 90°
\(\Rightarrow\)◇DENF là hình chữ nhật
b ) Trong \(\Delta\)MNP có : ND là đường trung tuyến
\(\Rightarrow\)ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )
Xét \(\Delta\)NDF và \(\Delta\)PDF có :
- ND = DP ( cmt )
- Góc NFD = Góc PFD ( = 90° )
- DF : cạnh chung
\(\Rightarrow\)\(\Delta\)NDF = \(\Delta\)PDF ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\)NF = PF ( 2 cạnh tương ứng )
\(\Rightarrow\)F là trung điểm NP
a) Xét tứ giác NEDF có +) \(\widehat{ENF}=90^0\)(tam giác MNP vuông tại N)
+) \(\widehat{DFN}=90^0\)(DF vuông góc NP)
+) \(\widehat{DEN}=90^0\)(DE vuông góc MN)
\(\Rightarrow\)tứ giác NEDF là hình chữ nhật
b) Xét \(\Delta DFN\)và \(\Delta DFP\)có:
DF : cạnh chung
DN = DP ( Do ND là trung tuyến của tam giác vuông MNP)
Do đó \(\Delta DFN\)\(=\Delta DFP\left(ch-cgv\right)\)
\(\Rightarrow NF=PF\)
Suy ra F là trung điểm của NP (đpcm)
Bạn vẽ hình vào nhé
a) Xét tg DEM có ME=DE( gt)
DI = IE( gt)
=> DI là dg tb tg DEM => DI//MD; DI =1/2 MD
Xét tg DEN có DF=FN(gt)
DI = IE(gt)
=> FI là dg tb tg DEN=> FI//EN ; FI=1/2EN
Mà NE = MP(gt)=> 1/2NE=1/2MP=>DI =FI=> tg DFI cân tại I
Bạn sửa lại b thành I nhé( trong đề bài ý)
b) Ta có : ID// MD( ID là dg tb tg DEM)
=> IDN=DME. (1)
Ta có FI// EN( FI là dg tb tg DEN)=> IFD=FDN(slt)
Mà IDF+FDN= IDN. (2)
Ta lại có IFD=IDF( tg DIF cân tại I) (3)
=> Từ (1) (2) (3) suy ra MNP= 2 IDF
Xét ΔNDP có
E là trung điểm của ND(gt)
I là trung điểm của NP(gt)
Do đó: EI là đường trung bình của ΔNDP(Định nghĩa đường trung bình của tam giác)
Suy ra: EI//DP và \(EI=\dfrac{DP}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay DK//EI
Xét ΔMEI có
D là trung điểm của ME(gt)
DK//EI(cmt)
Do đó: K là trung điểm của MI(Định lí 1 về đường trung bình của tam giác)
hay IK=KM