K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

26 tháng 10 2021

b: \(\widehat{NMH}+\widehat{N}=90^0\)

\(\widehat{P}+\widehat{N}=90^0\)

Do đó: \(\widehat{NMH}=\widehat{P}\)

24 tháng 11 2021

Tham khảo

tự vẽ hình nhé 

a, Xét ΔΔ MNP và ΔΔ HNM

< MNP chung 

<NMP=<NHM(=9000 )

b,=> MNHN=NPMNMNHN=NPMN 

=> MN2=NP⋅NHMN2=NP⋅NH

c, xét ΔΔ NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

MN2+MP2=NP2MN2+MP2=NP2

=> NP2=144⇒NP=12cmNP2=144⇒NP=12cm

Ta có MN2=NH⋅NPMN2=NH⋅NP

Thay số:7,22=NH⋅12⇒NH=4,32cm7,22=NH⋅12⇒NH=4,32cm

 

27 tháng 11 2023

Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=MN^2\)

=>\(NH\cdot3NH=6^2=36\)

=>\(NH^2=12\)

=>\(NH=2\sqrt{3}\left(cm\right)\)

=>\(NP=3\cdot NH=6\sqrt{3}\left(cm\right)\)

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MP^2+6^2=\left(6\sqrt{3}\right)^2=108\)

=>\(MP^2=108-36=72\)

=>\(MP=6\sqrt{2}\left(cm\right)\)

26 tháng 10 2023

a: NP=NI+IP

=5+7=12(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên \(\left\{{}\begin{matrix}MN^2=NI\cdot NP\\MP^2=PK\cdot PN\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}MN=\sqrt{5\cdot12}=2\sqrt{15}\left(cm\right)\\MP=\sqrt{7\cdot12}=2\sqrt{21}\left(cm\right)\end{matrix}\right.\)

b: trung tâm là cái gì vậy bạn?

c: Nếu kẻ như thế thì H trùng với I rồi bạn

26 tháng 10 2023

sửa lại chỗ câu b ghi lộn MP Chứ k phải NP

 

16 tháng 9 2021

Bài 1 : 

Xét tam giác MNP vuông tại M, đường cao MH 

* Áp dụng hệ thức : \(MH^2=NH.HP\Rightarrow NH=\frac{MH^2}{HP}=\frac{36}{9}=4\)cm 

=> NP = HN + HP = 4 + 9 = 13 cm 

* Áp dụng hệ thức : \(MN^2=NH.NP=4.13\Rightarrow MN=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(MP^2=PH.NP=9.13\Rightarrow MP=3\sqrt{13}\)cm

16 tháng 9 2021

Bài 2 : 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{9}=\frac{1}{25}+\frac{1}{AB^2}\Rightarrow AB=\frac{15}{4}\)cm 

( bạn nhập biểu thức trên vào máy tính cầm tay rồi shift solve nhé ) 

* Áp dụng hệ thức : \(AC.AB=AH.BC\Rightarrow BC=\frac{\frac{15}{4}.5}{3}=\frac{25}{4}\)cm 

26 tháng 10 2023


 A  áp dụng hệ thức lượng trong tam giác....
+  MI=NI*IP
  MI=5*7
MI=35
BC=NI+IP
BC=5+7=12
+   MN=NP*NI
MN=  12*5=60