K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: Q và A đối xứng với nhau qua MN

nên MN là đường trung trực của QA

=>MN vuông góc với QA tại trung điểm của QA

Ta có: Q và B đối xứng với nhau qua MP

nên MP là đường trung trực của QB

=>MP vuông góc với QB tại trung điểm của QB

Xét tứ giác MRQS có 

\(\widehat{MRQ}=\widehat{MSQ}=\widehat{SMR}=90^0\)

Do đó: MRQS là hình chữ nhật

b: Xét ΔMNP có

Q là trung điểm của NP

QS//MN

Do đó: S là trung điểm của MP

Xét tứ giác MQPB có 

S là trung điểm của MP

S là trung điểm của QB

Do đó: MQPB là hình bình hành

mà QM=QP

nên MQPB là hình thoi

5 tháng 2 2022

a) Xét tứ giác  \(ADBC\) ta có :

\(IB=IA\left(g.t\right)\)

\(IC=IC\) ( \(D\) đối xứng qua \(I\))

Vì tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Vậy tứ giác \(ADBC\) là hình bình hành 

b) Xét \(\Delta ABC\) ta có :

\(IA=IB\left(g.t\right)\)

\(MB=MC\left(g.t\right)\)

\(\Rightarrow IM\) là đường trung bình \(\Delta ABC\)

Do đó : \(IM\text{/ / }AC\)

Mà \(AB\text{⊥}AC\left(A=90^o\right)\)

Vậy \(IM\text{⊥}AB\)

Áp dụng định lí pytago  \(\Delta ABC\) ta có :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

\(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.13.5=30\left(cm^2\right)\)

undefined

 

24 tháng 11 2023

Phần tính diện tích ∆ABC cậu lộn AB =13cm roii í phải là 1/2 × 12 × 5 = 30 cm  nha

25 tháng 11 2018

a) ta có : 

KI vuông góc vs MN (gt),MNvuông góc vs MP (gt), IP' vuông góc vs MP(gt)

suy ra : tứ giác MKIP' là hình chữ nhật(đpcm)

b) ta có : MI = KP (tc hai đường chéo HCN)

suy ra : MF = FI (gt)

KF = P'F = 1/2KP' = 1/2 MF(tc)

vậy 3 đm K,F,P' thẳng hàng

c) ta có : 

KI vuông góc vs NM (gt) , mà MN vuông góc vs MP (gt)

suy ra : 

KI song song vs MP , có PI = IN (gt) 

suy ra : tam giác MNP có KI là ĐBH

suy ra IK bằng  1/2 MP (tc)

có : KI + MP' (hcn) , vậy suy ra : KI = MP' = P'P (tc),vậy MP' = P'P (tc)    (1)

có IP' = P'L (tc)    (2)

mà IL vuông góc vs MP (gt)     (3)

vậy từ (1),(2) và (3) suy ra : tứ giác MIPL là hinh thoi 

21 tháng 12 2020

Sửa đề: DE vuông góc với MP tại F

a) Xét tứ giác MEDF có

\(\widehat{EMF}=90^0\)(\(\widehat{NMP}=90^0\), E∈MN, F∈MP)

\(\widehat{DEM}=90^0\)(DE⊥MN)

\(\widehat{DFM}=90^0\)(DF⊥MP)

Do đó: MEDF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

8 tháng 1 2020

hình bạn tự vẽ nhé

a) Xét tứ giác ADBC có AB giao DC tại I là trung điểm của mỗi đường

\(\Rightarrow ADBC\)là hình bình hành (dhnb)

b)  Xét tam giác ABC có: 

I là trung điểm của AB (gt) , M là trung điểm của BC(gt)

\(\Rightarrow IM\)là đường trung bình tam giác ABC

\(\Rightarrow IM//AC\left(tc\right)\)

Mà \(AB\perp AC\)

\(\Rightarrow IM\perp AB\)( từ vuông góc đến song song )

c) Áp dụng định lý Py-ta-go vào tam giác ABC ta được:

\(AB^2+AC^2=BC^2\)

\(AB^2+5^2=13^2\)

\(AB^2=144\)

\(\Rightarrow AB=12\left(cm\right)\)

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.12.5=30\left(cm^2\right)\)

Vậy ...