K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

tự vẽ hình nha

a) xét tam giác MEN và tam giác MFP có:

\(\widehat{MFP}=\widehat{MEN}\left(=90'\right)\)

\(chung\widehat{NMP}\)

suy ra tam giác MEN đồng dạng với tam giác MFP (g-g)

do tam giác MEN đồng dạng với tam giác MFP

\(\Rightarrow\frac{ME}{MF}=\frac{MN}{MP}\)

lại có \(\widehat{NMP}\) chung

suy ra tam giác MFE đồng dạng với tam giác MPN

\(\Rightarrow\widehat{MEF}=\widehat{MNP}\)

17 tháng 3 2018

cám ơn Guiltykamikk

1: Xét ΔMEN vuông tại E và ΔMFP vuông tại F có

\(\widehat{EMN}\) chung

Do đó: ΔMEN~ΔMFP

2: Xét ΔHFN vuông tại F và ΔHEP vuông tại E có

\(\widehat{FHN}=\widehat{EHP}\)(hai góc đối đỉnh)

Do đó: ΔHFN~ΔHEP

3: Ta có; ΔMEN~ΔMFP

=>\(\dfrac{ME}{MF}=\dfrac{MN}{MP}\)

=>\(\dfrac{ME}{MN}=\dfrac{MF}{MP}\)

Xét ΔMEF và ΔMNP có

\(\dfrac{ME}{MN}=\dfrac{MF}{MP}\)

\(\widehat{EMF}\) chung

Do đó: ΔMEF~ΔMNP

4: Ta có: ΔHFN~ΔHEP

=>\(\dfrac{HF}{HE}=\dfrac{HN}{HP}\)

=>\(\dfrac{HF}{HN}=\dfrac{HE}{HP}\)

Xét ΔHFE và ΔHNP có

\(\dfrac{HF}{HN}=\dfrac{HE}{HP}\)

\(\widehat{FHE}=\widehat{NHP}\)(hai góc đối đỉnh)

Do đó: ΔHFE~ΔHNP

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

góc N chung

=>ΔHNM đồng dạng với ΔMNP

b: ΔMNP vuông tại M co MH vuông góc NP

nên MH^2=HN*HP

 

a: Xét ΔDMP vuông tại D và ΔENP vuông tại E có

góc P chung

=>ΔDMP đồng dạng với ΔENP

b: ΔDMP đồng dạng với ΔENP

=>PE/PD=MP/NP=MD/NE

=>PE/6=18/12=3/2

=>PE=9cm

a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có 

góc N chung

DO đó: ΔMNP∼ΔHNM

Suy ra: NM/NH=NP/NM

hay \(NM^2=NH\cdot NP\)

b: NP=13cm

\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)