Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) Gọi O là giao điểm của IP và HK. Chứng minh \(\widehat{MON}\) = 180o + \(\widehat{PMO}+\widehat{PNO}+\widehat{HIK}\)
Xét tam giác MNI và MPI có
MI là cạnh chung
MN = MP( tam giác MNP cân)
Góc MIN = góc MIP = 90°
=> Tam giác MIN = tam giác MIP( cgv - ch)
IN = IP = 5 cm nên I là trung điểm của NP
b) Tam giác MIN vuông tại I có
NI2 + MI2 = MN2( định lí Pytago)
MI2 + 52 = 142
MI2 + 25 = 196
MI2 = 144
MI=12
c) Xét tam giác PHI và PKI có
MI là cạnh chung
Góc HMI = KMI ( tam giác NMI = PMI )
Góc IHM = IKM = 90°
=》 Tam giác HMI = KMI ( ch - gn)
=》IH=IK
a: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CA=CB
CI chung
Do đó: ΔCIA=ΔCIB
Suy ra: IA=IB
b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
c: IA=IB=AB/2=6(cm)
nen IC=8(cm)
d: Xét ΔCAB có CH/CA=CK/CB
nên HK//AB
BẠn tự vẽ hình nha:
MÌnh không chắc cách làm này phù hợp không,đây là cách chậm và dễ hiểu nhất:
a)Vì ACI+AIC+CAI=1800( tổng 3 góc cua 1 tam giác)
=> ACI+CAI=900 (1)
Vì CIB+IBC+BCI=180(như trên)
=>IBC+BCI=900 (2)
Mà IBC=CAI (tam giac ACB cân- có CA=CB=10 Cm)
=> tu 1 và 2 =>ACI=BCI
Xét tam giác CAI và CBI, có:
ACI=BCI( ở trên)
CAI=CBI (tam giác ABC cân)
CA=CB=10 cm
=> tam giác CAI= tg CBI
=>AI=BI ( 2 cạnh tương ứng)
b) Xét tg CHI và CKI, có:
HCI=KCI (vì có BCI=ACI-câu a)
CI cạnh chung
=> tg CHI= tg CKI ( cạnh huyền-góc nhọn)
=> HI= KI
c) IA=IB(câu a) => IA = AB :2=12:2=6 (cm)
Áp dụng định lí Py-ta-go trong tg CBI,có:
IC2=CB2-IB2
=> IC=8(cm) (bạn tự lắp số vào nha)
d) vì tg CHI=tg CKI (cm ở b)
=> CH=CK => tg CHK cân ở C => CHK=CKH=(1800-HCK):2 (1)
tg CAB cân=> CAB=CBA=(1800-ACB):2=(1800-HCK):2 (2)
từ 1)và (2)=>CHK=CAB
MÀ chúng là 2 góc đồng vị
=>HK song song AB
P N M H K I Q
GT | △MNP cân tại P. MN = 6cm, NPI = MPI = NPM/2 , (I MN) IK ⊥ PM , IH ⊥ PN . IQ = IM |
KL | a, △MPI = △NPI b, HIP = PIK c, △MIQ vuông cân. MQ = ? d, Nếu PKH đều, điều kiện △MNP |
Bài làm:
a, Vì △MNP cân tại P => PN = PM
Xét △NPI và △MPI
Có: NP = MP (gt)
NPI = MPI (gt)
PI là cạnh chung
=> △NPI = △MPI (c.g.c)
b, Xét △HPI vuông tại H và △KPI vuông tại K
Có: PI là cạnh chung
HPI = KPI (gt)
=> △HPI = △KPI (ch-gn)
=> HIP = PIK (2 góc tương ứng)
Mà IP nằm giữa IH, IK
=> IP là phân giác KIH
c, Ta có: PIN = MIQ (2 góc đối đỉnh)
Mà PIN = 90o (gt)
=> MIQ = 90o (1)
Xét △MIQ có: IQ = IM => △MIQ cân tại I (2)
Từ (1), (2) => △MIQ vuông cân tại I
Vì △NPI = △MPI (cmt)
=> IN = IM (2 cạnh tương ứng)
Mà MN = IN + IM = 6 (cm)
=> IN = IM = 6 : 2 = 3 (cm)
Mà IM = IQ
=> IM = IQ = 3 (cm)
Xét △MIQ vuông tại I có: IQ2 + IM2 = MQ2 (định lý Pitago)
=> 32 + 32 = MQ2
=> 9 + 9 = MQ2
=> 18 = MQ2
=> MQ = \(\sqrt{18}=3\sqrt{2}\)
d, Để △PHK đều <=> HPK = PKH = KHP = 60o
=> △MNP có NPM = 60o mà △MNP cân
=> △MNP đều
Vậy để △PKH đều <=> △MNP đều
a: MK=3cm
b: Xét ΔMNH vuông tại N và ΔMKH vuông tại K có
MH chung
góc NMH=góc KMH
Do đó: ΔMHN=ΔMHK
Suy ra: MN=MK và HN=HK
=>MH là đường trung trực của NK
c: Ta có: NH=HK
mà HK<HP
nên NH<HP