K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

Hình : tự vẽ

a) Do tam giác MNP cân tại M => MN=MP

         mà PE , ND là đg cao của tam giác MNP 

=> PE, ND cũng là đường trung tuyến => ME=NE=\(\frac{1}{2}\)MN

                                                                   MD=DP = \(\frac{1}{2}\)MP

mà MN=MP => MD=ME

Xét tam giác MND và tam giác MBE có :

Góc A chung 

MD=ME ( cm trên ) 

MN=MP ( do tam giác MNP cân tại M )

nên tam giác MND = tam giác MBE

              

a: Sửa đề: ΔMNP cân tại M

a: Xét ΔMDN vuông tại D và ΔMEP vuông tại E có

MN=MP

góc DMN chung

=>ΔMDN=ΔMEP

b: góc MND+góc HNP=góc MNP

góc MPE+góc HPN=góc MPN

mà góc MND=góc MPE và góc MNP=góc MPN

nên góc HPN=góc HNP

=>ΔHNP cân tại H

c: HN=HP

HP>HD

=>HN>HD

a: Xét ΔMND vuông tại D và ΔMPE vuông tại E có

MN=MP

góc M chung

=>ΔMND=ΔMPE

b: góc MND+góc HNP=góc MNP

góc MPE+góc HPN=góc MPN

mà góc MND=góc MPE và góc MNP=góc MPN

nên góc HNP=góc HPN

=>ΔHPN cân tại H

c: HN=HP

HP>HD

=>HN>HD

 

9 tháng 5 2018

ABCHIEDNM
 

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC(tam giác ABC cân tại A)

Góc A chung 

=> Tam giác ABD=tam giác ACE(ch-gn)

b) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
                 Và \(\widehat{ABD}=\widehat{ACE}\) ( tam giác ABD=ACE)

\(\Leftrightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\)

Do đó tam giác BHC cân tại H