Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M N I H 25cm 144 cm
Tam giác MNI vuông tại M, áp dụng hệ thức, ta có:
\(MH^2=NH.HI=25.144=3600\)
\(\Rightarrow MH=\sqrt{3600}=60\left(cm\right)\)
Vì H nằm giữa N và I nên: \(NH+HI=25+144=NI=169\left(cm\right)\)
Tam giác MNI vuông tại M, áp dụng hệ thức, ta lại có:
\(MN^2=NH.NI=25.169=4225\Rightarrow MN=\sqrt{4225}=65\left(cm\right)\)
\(MI^2=HI.NI=144.169=24336\Rightarrow MI=\sqrt{24336}=156\left(cm\right)\)
Vậy .....
b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:
\(MH\cdot MD=MP^2\left(1\right)\)
Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(PH\cdot PN=MP^2\left(2\right)\)
Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)
Áp dụng HTL trong tam giác MNQ vuông tại Q:
\(MQ^2=QH.QN\)
\(\Rightarrow QH=\dfrac{MQ^2}{QN}=\dfrac{12^2}{20}=7,2\)
Áp dụng đ/lý Pytago:
\(QN^2=MN^2+MQ^2\)
\(\Rightarrow MN=\sqrt{QN^2-MQ^2}=\sqrt{20^2-12^2}=16\)
Áp dụng HTL:
\(MN^2=NH.QN\)
\(\Rightarrow NH=\dfrac{MN^2}{QN}=\dfrac{16^2}{20}=12,8\)
Sửa đề: Đường cao MH
Áp dụng HTL:
\(MH^2=NH.HP\)
\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)
\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)
6:
a: AB^2=BH*BC
=>BH(BH+6,4)=6^2
=>BH=3,6cm
b: AC=căn 6,4*10=8cm
a: NP=NI+IP
=5+7=12(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên \(\left\{{}\begin{matrix}MN^2=NI\cdot NP\\MP^2=PK\cdot PN\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}MN=\sqrt{5\cdot12}=2\sqrt{15}\left(cm\right)\\MP=\sqrt{7\cdot12}=2\sqrt{21}\left(cm\right)\end{matrix}\right.\)
b: trung tâm là cái gì vậy bạn?
c: Nếu kẻ như thế thì H trùng với I rồi bạn
M N I H 25cm 144cm
Ta có : \(\left\{{}\begin{matrix}NH=25cm\\IH=144cm\end{matrix}\right.\Rightarrow NI=NH+IH=25+144=169cm\)
Áp dụng hệ thức lượng cho \(\Delta MNI\) ta có :
\(MH^2=NH.HI\Leftrightarrow MH=\sqrt{NH.HI}=\sqrt{25.144}=60cm\)
Áp dụng định lý py-ta-go cho \(\Delta MHI\) ta có :
\(MI=\sqrt{MH^2+HI^2}=\sqrt{60^2+144^2}=156cm\)
Áp dụng định lý py-ta-go cho \(\Delta MNH\) ta có :
\(MN=\sqrt{MH^2+NH^2}=\sqrt{60^2+25^2}=65cm\)
Vậy \(MH=60cm\) ; \(NI=169cm\) ; \(MN=65cm\) ; \(MI=156cm\)