K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có

CB chung

\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)

b) Ta có: ΔBHC=ΔCKB(cmt)

nên HC=KB(hai cạnh tương ứng)

Ta có: AK+KB=AB(K nằm giữa A và B)

AH+HC=AC(H nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và KB=HC(cmt)

nên AK=AH

Xét ΔAKH có AK=AH(cmt)

nên ΔAKH cân tại A(Định nghĩa tam giác cân)

c) Ta có: ΔAKH cân tại A(cmt)

nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)

d) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)

hay \(\widehat{KBO}=\widehat{HCO}\)

Xét ΔKBO vuông tại K và ΔHCO vuông tại H có

KB=HC(cmt)

\(\widehat{KBO}=\widehat{HCO}\)(cmt)

Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)

nên OB=OC(hai cạnh tương ứng)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)

4 tháng 2 2021

tham khảo nha

7 tháng 10 2019

a,góc c=50 góc a=80

7 tháng 10 2019

A B C O K H

a ) Vì \(\Delta ABC\) cân tại A (gt)

\(\Rightarrow\widehat{B}=\widehat{C}=50^o\)

Ta có : \(\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-\left(50^o+50^o\right)=180^o-100^o=80^o\)

b ) Xét \(\Delta KBC\) và \(\Delta HCB\) có :

\(\widehat{BKC}=\widehat{CHB}=90^o\)

BC là cạnh chung 

\(\widehat{C}=\widehat{B}\left(cmt\right)\)

\(\Rightarrow\Delta KBC=\Delta HCB\) ( cạnh huyền - góc nhọn )

\(\Rightarrow KC=BH\)

C ) Vì \(\Delta KBC=\Delta HCB\left(cmt\right)\)

\(\Rightarrow\widehat{BCK}=\widehat{CBH}\)

\(\Rightarrow\Delta OBC\) cân tại O ( đpcm)

18 tháng 12 2016

A B C O p/s:hình ảnh chỉ mang tc minh họa H K

a)Vì: ΔABC cân tại A(gt)

=> \(\widehat{B}=\widehat{C}=50^o\)

Có: \(\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-\left(50^o+50^o\right)=180^o-100^0=80^o\)

b)Xét ΔKBC và ΔHCB có:

\(\widehat{BKC}=\widehat{CHB}=90^o\)

BC: cạnh chung

\(\widehat{C}=\widehat{B}\left(cmt\right)\)

=> ΔKBC=ΔHCB(cạnh huyền-góc nhọn)

=>KC=BH

c)Vì: ΔKBC=ΔHCB(cmt)

=> \(\widehat{BCK}=\widehat{CBH}\)

=>ΔOBC cân tại O

 

18 tháng 12 2016

Mk k vẽ hình nữa nha!!!

a/ Vì ΔABC cân tại A(gt) => \(\widehat{B}=\widehat{C}=50^o\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

hay \(\widehat{A}+50^o+50^o=180^o\Rightarrow\widehat{A}=180^o-50^o-50^o=80^o\)

b/ Xét 2 Δ vuông: ΔBKC và ΔCHB có:

BC: Cạnh chung

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

=> ΔBKC = ΔCHB (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng) (đpcm)

c/ Vì ΔBKC = ΔCHB (ý b)

=> \(\widehat{HBC}=\widehat{KCB}\) (2 góc tương ứng)

=> ΔOBC cân tại O (đpcm)

13 tháng 3 2016

Bạn vẽ hình ra đã rồi nhìn lời giải nhá

a) TG' ABC vuông cân tại A -> g' ABC = g' ACB = 45 và AB = AC

    TG' ABH vuông tại H -> g' ABH = 90 - BAH (1)

    Có g' CAH = 90 - BAH ( TG' ABC vuông tại A ) (2) 

 Từ (1) và (2) -> g' ABH = g' CAH 

Xét TG' AHB và TG' AKC có

      g' AHB = g' AKC ( = 90 )  

         AB = AC  ( gt )

       g' HAB = g' KAC ( cmt )

 -> TG' AHB = TG' AKC ( ch - gn )

-> BH = Ak

      

    

9 tháng 5 2019

Trả lời................

Tớ ko biết đúng hay sai nha:

a) Vì ΔΔABC cân tại A

=> AB = AC và ABCˆABC^ = ACBˆACB^

hay KBCˆKBC^ = HCBˆHCB^

Xét ΔΔCKB vuông tại K và ΔΔBHC vuông tại H có:

BC chung

KBCˆKBC^ = HCBˆHCB^ (c/m trên)

=> ΔΔCKB = ΔΔBHC (ch - gn)

=> KB = HC (2 cạnh t/ư)

Ta có: AH + HC = AC

AK + KB = AB

mà AB = AC; KB = HC

=> AH = AK

b)

) Xét ΔΔAHB và ΔΔAKC có:

AH = AK (câu a)

BACˆBAC^ chung

AB = AC (câu a)

=> ΔΔAHB = ΔΔAKC (c.g.c)

=> ABHˆABH^ = ACKˆACK^ (2 góc t/ư)

hay KBIˆKBI^ = HCIˆHCI^

Xét ΔΔKBI và ΔΔHCI có:

KB = HC (câu a)

KBIˆKBI^ = HCIˆHCI^ (c/m trên)

BKIˆBKI^ = CHIˆCHI^ (= 90o)

=> ΔΔKBI = ΔΔHCI (g.c.g)

=> KI = HI (2 cạnh t/ư)

Xét ΔΔAKI và ΔΔAHI có:

KI = HI (c/m trên)

AI chung

AK = AH (câu a)

=> ΔΔAKI = ΔΔAHI (c.c.c)

=> KAIˆKAI^ = HAIˆHAI^ (2 góc t/ư)

Do đó AI là tia pg của AˆA^.

c)

c) Có : KBCˆ+CBEˆ=90o;HCBˆ+HBCˆ=90oKBC^+CBE^=90o;HCB^+HBC^=90o

mà KBCˆ=HCBˆKBC^=HCB^ ⇒⇒ HBCˆ=CBEˆHBC^=CBE^ hay BC là phân giác HBEˆ

27 tháng 2 2022

mọi người giúp mk với ạ. Mk cảm ơn trước nha

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H có

AI chung

AK=AH

Do đó: ΔAKI=ΔAHI

Suy ra: \(\widehat{KAI}=\widehat{HAI}\)

hay AI là tia phân giác của góc BAC

c: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

Do đó: ΔKBC=ΔHCB

Suy ra: \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

d: Xét ΔABC có AK/AB=AH/AC

nên KH//BC

e: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên AI là đường cao