Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
a)ΔABCđều (gt) nên AB = BC = AC ; góc A = góc B = góc C = 60 0 mà AD = BE = CF (gt)
=> AB - AD = BC - BE = AC - CF <=> BD = CE = AF
ΔADF,ΔBEDcó AD = BE (gt) ; góc DAF = góc EBD = 60 0 (cmt) ; AF = BD (cmt)
nên ΔADF = ΔBED c.g.c
=> DF = ED (2 cạnh tương ứng) (1)
ΔADF,ΔCFEcó AD = CF (gt) ; góc DAF = góc FCE = 60 0 (cmt) ; AF = CE (cmt)
nên ΔADF = ΔCFE c.g.c
=> DF = FE (2 cạnh tương ứng) (2).Từ (1) và (2),ta có DF = FE = ED.
VậyΔDEFđều
b) không biết làm
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
B C A H E Q F P D
a/
Ta thấy F và E đều nhìn BC dưới cùng 1 góc 90 độ nên E,F nằm trên đường tròn đường kính BC ta gọi là đường tròn (O')
=> B,F,E,C cùng nawmg trên một đường tròn
b/
Xét đường tròn (O) ta có
sđ \(\widehat{BQP}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BP (góc nội tiếp đường tròn) (1)
Xét đường tròn (O') ta có
sđ \(\widehat{BEF}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BF (góc nội tiếp đường tròn) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BQP}=\widehat{BEF}\) => PQ//EF (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc ở vị trí đồng vị thì chúng // với nhau
c/ ta thấy F và D cùng nhìn BH dưới cùng 1 góc 90 độ nên BDHF là tứ giác nội tiếp
sđ \(\widehat{ABE}=\)sđ \(\widehat{FDA}=\frac{1}{2}\) sđ cung FH (1)
Ta thấy D và E cùng nhìn AB đướ cùng 1 góc 90 độ nên ABDE là tứ giác nội tiếp
sđ \(\widehat{ABE}=\)sđ \(\widehat{ADE}=\frac{1}{2}\) sđ cung AE (2)
Mà \(\widehat{FDA}+\widehat{ADE}=\widehat{FDE}\) (3)
Từ (1) (2) và (3) \(\Rightarrow\widehat{FDE}=2.\widehat{ABE}\left(dpcm\right)\)
mình không biết làm
ai minh tích lại
ai tích mình tích lại
ai tích mình tịch lìa
a) góc BEC = góc BFC = 900 => BCEF nội tiếp
b) Tg AEF và tg ABC có góc A chung ; góc AEF = góc ABC (góc ngoài - góc trong đối BCEF nội tiếp)
=> tg AEF đd tg ABC => AE/AB = EF/BC => đpcm
c) Trong tg vuông AEB có cosA = AE/AB = EF/BC => EE = BC.cosA không đổi