Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
\(sinABH=\frac{AH}{AB}\) \(cosABH=\frac{BH}{AB}\)
\(tanABH=\frac{AH}{BH}\) \(cotABH=\frac{BH}{AH}\)
\(sinHAB=\frac{BH}{AB}\) \(cosHAB=\frac{AH}{AB}\)
\(tanHAB=\frac{BH}{AH}\) \(cotHAB=\frac{AH}{BH}\)
\(\sin ABH=\frac{AH}{AB}\) \(\cos ABH=\frac{BH}{AB}\)
\(\tan ABH=\frac{AH}{BH}\) \(\cot ABH=\frac{BH}{AH}\)
\(\sin HAB=\frac{BH}{AB}\) \(\cos HAB=\frac{AH}{AB}\)
\(\tan HAB=\frac{BH}{AH}\) \(\cot HAB=\frac{AH}{BH}\)
Sorry ko vẽ đc hình
Code : Breacker
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
Vì \(\widehat{B}=120^0\) nên đường cao AH ứng với cạnh BC sẽ nằm ngoài tam giác ABC
Ta có: \(\widehat{ABH}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{ABH}+120^0=180^0\)
hay \(\widehat{ABH}=60^0\)
Xét ΔABH vuông tại H có
\(\widehat{ABH}=60^0\)(cmt)
nên \(\sin\widehat{ABH}=\dfrac{\sqrt{3}}{2}\); \(\cos\widehat{ABH}=\dfrac{1}{2}\); \(\tan\widehat{ABH}=\sqrt{3}\); \(\cot\widehat{ABH}=\dfrac{\sqrt{3}}{3}\)
Xét ΔABH vuông tại H có
\(\widehat{BAH}=30^0\)
nên \(\sin\widehat{BAH}=\dfrac{1}{2}\); \(\cos\widehat{BAH}=\dfrac{\sqrt{3}}{2}\); \(\tan\widehat{BAH}=\dfrac{\sqrt{3}}{3}\); \(\cot\widehat{BAH}=\sqrt{3}\)
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=92+122=225
BC=15cm
* AH.BC=AB.AC
AH.15=9.12
AH.15=108
AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)
b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)
A B C 30o 9 H 18 D
a, ^B = ^A - ^C = 900 - 300 = 600
\(\cos B=\frac{AB}{AC}\Rightarrow\frac{1}{2}=\frac{9}{AC}\Rightarrow AC=18\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=81+324=405\Rightarrow BC=9\sqrt{5}\)cm
b, \(\cos B=\frac{BH}{AB}\Rightarrow\frac{1}{2}=\frac{BH}{9}\Rightarrow BH=\frac{9}{2}\)cm
\(\sin B=\frac{AH}{AB}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AH}{9}\Rightarrow AH=\frac{9\sqrt{3}}{2}\)cm
c, Vì AD là đường phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{9\sqrt{5}}{27}=\frac{\sqrt{5}}{3}\)
\(\Rightarrow BD=\frac{\sqrt{5}}{3}AB=\frac{\sqrt{5}}{3}.9=3\sqrt{5}\)cm
\(\Rightarrow HD=BD-BH=3\sqrt{5}-\frac{9}{2}\)cm
Áp dụng định lí tam giác AHD vuông tại H ta có :
\(AD^2=AH^2+HD^2=\left(\frac{9\sqrt{3}}{2}\right)^2+\left(3\sqrt{5}-\frac{9}{2}\right)^2\)
tự giải nhé ><
a. Giải tam giác ABC
B=60^0
AC=AB/tan30=9.√ 3
BC=AB/sin30=9.2 =18
S=AC.AB/2=81√ 3/2
b. Kẻ AH là đường cao, tính AH, BH
AH=2S/BC=81√ 3/18=9√ 3/2
BH=√ (AB^2-AH^2)=9√ (1-3/4)=9/2
đm hỏi bậy