K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ai đó kết bạn vs mình đi buồn wá

30 tháng 1 2017

mình chịu

Ai đó kết bạn vs mình đi buồn wá

30 tháng 1 2017

ý bạn là mình à nếu trả lời được thì mình kb

4 tháng 2 2018

Phía nửa mặt phẳng bờ AB không chứa M lấy điểm N sao cho AMN là tam giác đều

Ta có ˆCAB=ˆMANCAB^=MAN^

<=>ˆCAM+ˆMAB=ˆMAB+ˆBANCAM^+MAB^=MAB^+BAN^

<=>ˆCAM=ˆBANCAM^=BAN^ (1)

mà CA =BA và AM =AN (2)

từ (1, 2) =>△CAM=△BAN△CAM=△BAN (c, g, c) (3)

(3) =>CM =BN

ta có MA2=MB2+MC2MA2=MB2+MC2

<=>MN2=MB2+BN2MN2=MB2+BN2

=>t giác MBN vuông tại B

(3) =>ˆACM=ˆABNACM^=ABN^

ˆMBN=ˆABM+ˆABN=90∘MBN^=ABM^+ABN^=90∘

<=>ˆABM+ˆACM=90∘ABM^+ACM^=90∘

<=>(60∘−ˆMBC)+(60∘−ˆMCB)=90∘(60∘−MBC^)+(60∘−MCB^)=90∘

<=>ˆMBC+ˆMCB=30∘MBC^+MCB^=30∘

<=>ˆBMC=180∘−30∘=150∘

27 tháng 3 2020

thankinhachi

mk ko bt lm câu b nha ~ xl

c,Vẽ tam giác đều AMD ( D thuộc nửa mặt phẳng bờ AM không chứa C)(Bạn tự vẽ hình nha, dễ như ăn kẹo ấy)

=> DM = AD = AM

Sau đó bạn chứng minh tam giác ADB = tam giác AMC (c.g.c) (cũng dễ thôi)

=> BD = MC (cặp cạnh tương ứng)

Ta có: DM = AM, BD = MC

=> DM : BM : BD = 3:4:5

=> tam giác BDM vuông tại M

=> góc AMB = 90o + 60o = 150o

11 tháng 3 2019

A B C M N D

Vẽ tam giác đều AMN trên nửa mặt phẳng bờ AM chứa điểm B.Kẻ BD vuông góc với AM tại D.

Ta có:\(\widehat{NAB}=\widehat{NAM}-\widehat{BAM}=60^0-\widehat{BAM}\)

\(\widehat{MAC}=\widehat{BAC}-\widehat{BAM}=60^0-\widehat{BAM}\)

\(\Rightarrow\widehat{NAB}=\widehat{MAC}\)

Xét \(\Delta\)AMC và \(\Delta\)ANB có:AM=AN,^NAB=^MAC,AB=AC => \(\Delta AMC=\Delta ANB\left(c-g-c\right)\Rightarrow\hept{\begin{cases}AN=AM=MN=1\\BN=CM=\sqrt{3}\end{cases}}\)

Ta có:\(BN^2+MN^2=\sqrt{3}+1^2=4=BM^2\)

\(\Rightarrow\Delta BNM\) vuông tại N.

\(\Rightarrow\widehat{BNM}=90^0,BM=2MN\)

\(\Rightarrow\widehat{NMB}=60^0\Rightarrow\widehat{AMB}=120^0\)

Mà \(\Delta ANB=\Delta AMC\Rightarrow\widehat{ANM}=\widehat{AMC}=60^0+60^0=120^0\)(^AMC có khác gì ^CMA đâu má)

Ta có:\(\widehat{BMD}=180^0-\widehat{BMA}=180^0-120^0=60^0\)

\(\Rightarrow\widehat{MBD}=30^0\Rightarrow MB=2MD\Rightarrow MD=1\Rightarrow AD=2\)

Xét \(\Delta\)BNM và \(\Delta\)BDM có:BM  là cạnh chung,^NBM=^DBM(cùng bằng 30 độ) => \(\Delta BNM=\Delta BDM\left(ch-gn\right)\)

\(\Rightarrow BN=BD=\sqrt{3}\)

Áp dụng định lý Pythagore vào tam giác vuông ABD ta được:\(AB^2=AD^2+BD^2=2^2+\sqrt{3}^2=4+3=7\)

\(\Rightarrow AB=\sqrt{7}\).Mà \(\Delta\)ABC đều nên \(AB=BC=CA=\sqrt{7}\)

10 tháng 7 2019

Câu hỏi của channel Anhthư - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo câu c nhé!