Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(d\perp\left(ABC\right)\) nên \(MN\perp BC\)
\(\left\{{}\begin{matrix}MC\perp\left(BOH\right)\\BN\subset\left(BOH\right)\end{matrix}\right.\) \(\Rightarrow MC\perp BN\)
\(\left\{{}\begin{matrix}MB\perp\left(CHO\right)\\CN\subset\left(CHO\right)\end{matrix}\right.\)\(\Rightarrow MB\perp CN\)
Có MC=2MI mà MI là đường trung tuyến của của \(\Delta ABC\)
=>M là trọng tâm của tam giác ABC=>A,M,H thẳng hàngTrong mp(SAH)có :AN=2NS;AM=2MH=>MN//SH (Thales)Mà \(SH\perp\left(ABC\right)\);SH ko thuộc (ABC)=>MN vuông góc với (ABC)
P/s: Gợi ý này ok rồi nhé :> Mà sao ko thấy kí hiệu "ko thuộc" nhờ :v
Hình như tui nhấn Shift+Enter nên nó ko nhảy dòng rồi -.- Thôi kệ đi, bạn xem tạm nhé
Gọi I, J, K lần lượt là các giao điểm của AH và MO; AC và BH; MC và BO
\(MA\perp\left(ABC\right)\Rightarrow MA\perp BJ\)
H là trực tâm của tam giác ABC => \(AC\perp BJ\)
\(\left\{{}\begin{matrix}BJ\perp MA\\BJ\perp AC\end{matrix}\right.\)\(\Rightarrow BJ\perp\left(MAC\right)\)
\(\Rightarrow BJ\perp MC\)
O là trực tâm của tam giác MBC nên \(BO\perp MC\)
Do đó : \(BO\perp\left(BJK\right)\Rightarrow MC\perp\left(BOH\right)\Rightarrow MC\perp OH\) (1)
Chứng minh tương tự : \(MB\perp OH\) (2)
Từ (1) và (2) cho \(OH\perp\left(MBC\right)\)