K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

Thang nay hay lua nguoi lam dung giup

Trong các điều kiện sau, câu nào xác định được một véctơ duy nhất?A. Hai điểm phân biệt. B. Hướng của một véctơ.C. Độ dài một véctơ. D. Hướng và độ dài.Câu 2. Mệnh đề nào sau đây là sai?A. a a ≠ ⇔ ≠ 0 0  B. Cho ba điểm A , B , C phân biệt thẳng hàng CA, CBcùng hướng khi và chỉ khi C nằmngoài đoạn AB .C. a, bcùng phương với cthì a, bcùng phương.D. AB AC AC + =  .Câu 3. Cho ba điểm A , B ,...
Đọc tiếp

Trong các điều kiện sau, câu nào xác định được một véctơ duy nhất?
A. Hai điểm phân biệt. B. Hướng của một véctơ.
C. Độ dài một véctơ. D. Hướng và độ dài.
Câu 2. Mệnh đề nào sau đây là sai?
A. a a ≠ ⇔ ≠ 0 0
  


B. Cho ba điểm A , B , C phân biệt thẳng hàng CA

, CB

cùng hướng khi và chỉ khi C nằm

ngoài đoạn AB .
C. a

, b

cùng phương với c

thì a

, b

cùng phương.

D. AB AC AC + =
  
.

Câu 3. Cho ba điểm A , B , C phân biệt thẳng hàng. Câu nào sau đây đúng?
A. Nếu B là trung điểm của AC thì AB CB =
 

B. Nếu điểm B nằm giữa A và C thì BC

, BA

ngược hướng.

C. Nếu AB AB >
 

thì B nằm trên đoạn AC .

D. CA AB CA AB + = +
   
.
Câu 4. Mệnh đề nào sau đây là sai?
A. AB AC B C = ⇒ ≡
 

.

B. Với mọi điểm A , B , C bất kì ta luôn có: AB BC AC + =
  
.

C. BA BC + = 0
  

khi và chỉ khi B là trung điểm AC .
D. Tứ giác ABCD là hình bình hành khi và chỉ khi AB CD =
 
.

Câu 5. Cho tam giác ABC có trực tâm H và nội tiếp trong đường tròn tâm O . B′ là điểm đối xứng
của B qua O . Mệnh đề nào sau đây là sai?
A. AH

, B C′

cùng phương. B. CH

, B A′

cùng phương.
C. AHCB′ là hình bình hành. D. HB HA HC = +
  
.

Câu 6. Cho tam giác ABC có trọng tâm G , M là trung điểm của BC và O là điểm bất kì. Mệnh đề
nào sau đây là sai?
A. MB MC + = 0
  

. B. OB OC OM + = 2
  
.

C. OG OA OB OC = + +
   

. D. GA GB GC + + = 0
   
.
Câu 7. Cho ∆ABC có trọng tâm G và điểm M thỏa mãn 2 3 0 MA MB MC + + =
   
thì GM

bằng:

A. 1
6
BC

. B. 1
6
CA

. C. 1
6
AB

. D. 1
3
BC

.

Câu 8. Cho tam giác ABC câu nào sau đây là đúng?
A. AB AC BC − =
  

. B. AB CA BC + + = 0
   
.

C. AC BA CB + =
  

. D. AB AC BC + >
  
.
Câu 9. Cho tam giác ABC cân tại đỉnh A . Mệnh đề nào sau đây sai?
A. AB AC =
 
. B. AB AC BC − =
  

. C. BC AB AB + =
  

. D. AB AC =
 
.

Câu 10. Cho tam giác ABC đều cạnh a . Khi đó AB AC +
 
bằng:

A. a 3 . B. 3
2
a
. C. 2a . D. 2 3 a .

3
28 tháng 9 2017

gõ như thế này chắc bạn cx mỏi tay nhỉ

28 tháng 9 2017

Có mỏi tay ko bạn

20 tháng 9 2016

a, nếu ko có vecsto thi lioc se ko còn cho nên c = 2 

20 tháng 9 2016

a) Trong mặt phẳng tọa độ Oxy cho vectơ a =(a1;a2) và vectơ đối của véctơ a là véctơb = –a ⇒ b = (-a1; -a2). Vật khẳng định hai véctơ đối nhau thì chúng có hoành độ đối nhau là đúng.

b) Trong mặt phẳng tọa độ Oxy véctơ i =(1;0); Véctơ a ≠ 0 cùng phương với véctơi khi a = ki với k∈R. Suy ra a =(k;0) với k≠0. Vậy khẳng định véctơ a ≠ 0 cùng phương với véctơ i nếu a có hoành độ bằng 0 là sai.

c) Trong mặt phẳng tọa độ Oxy véctơ j = (0;1); véctơ a cùng phương với véctơ j khi a = kj với k∈R. Suy ra a =(0;k) với k∈R. Vậy khẳng định véctơ a có hoành độ bằng 0 thì cùng phương với véctơ j là đúng.

16 tháng 9 2021

chào kênh du túp!

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).