K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDEH vuông tại E và ΔDIH vuông tại I có

DH chung

góc EDH=góc IDH

=>ΔDEH=ΔDIH

b: DE=DI

HE=HI

=>DH là trung trực của EI

c: EH=HI

HI<HF

=>EH<HF

d: Xét ΔDFK có

KI,.FE là đường cao

KI cắt FE tại H

=>H là trực tâm

=>DH vuông góc KF

1 tháng 3 2022

1 tháng 3 2022

câu d) mik chx bt lm

5 tháng 5 2018

c) xét tam giác vuông DEH và DHI

​có góc DEH = IDH(gt)

cạnh DH chung

​=> tam giác DEH=IDH (ch-gn) ​​

​d) gọi K là giao điểm của EI và DH

​xét tam giác EDK và IDK

có ED=ID(EDH=IDH)

​ góc EDK = IDK(gt)

​cạnh DK chung

=> tam giác EDK = IDK(cgc)

​=>IK=IK(2 cạnh tương ứng) (1)

góc DKE=DKI(2 góc tương ứng) ​

​ta có góc DKE+DKI=180(kề bù)

​mà góc DKE=DKI ​​​

​=> góc DKI=DKE=180:2

​DKI=DKE=90 (2)

​Từ (1)(2)=> DK là trung trực của EI

​hay DH là trung trực của EI

Chúc bạn học tốt ​

Bạn ghi lại đề đi bạn

7 tháng 3 2022

Bài 10. Cho tam giác DEF vuông tại D, có . Tia phân giác của góc F cắt DE tại I. Kẻ IH vuông góc với EF tại H ( ).

a. Chứng minh: DFI = HFI 

b. DFH là tam giác gì? Vì sao?.

c. Qua E kẻ đường thẳng vuông góc với DH tại N. Chứng minh EN // FI.

Bài 11. Cho cân ở A. Trên tia đối của các tia BC và CB lấy thứ tự hai điểm D và E sao cho BD = CE.

a) Chứng minh cân

b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của . 

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE Chứng minh: BH = CK.

d) Chứng minh ba đường thẳng AM, BH, CK đồng quy.  Đây ạ

 

 

 

 

5 tháng 5 2018

Từ  tam giác  DHE=tam giác DHI

Suy ra EH=HI

Ta lại có tam giác HIF có HIF=90

=> HF là cạnh lớn nhất

nên HF>HI

hay HF>EH

b) Xét 2 tam giác vuông KEH và FIH có

              EHK=IHF( đối đỉnh)

             EH=IF ( cmt)

      Do đó tam giác KEH= tam giác FIH (CGV-GNK)

                    => EK=IF ( 2 cạnh tương ứng)

c)  ta có góc EHI= góc KHF ( đối đỉnh)

              mà tam giác EHI có EH=HI (cmt)

                 => tam giác EHI  cân (1)

                     tam giác  KHF có KH=HF (tam giác KEH= tam giác FIH)

                 => tam giác KHF cân (2)

Từ (1) và (2) ta suy ra được

     HEI=\(\frac{180^0-EHI}{2}\)

     HFK=\(\frac{180^0-KHF}{2}\)

  mà do góc EHI=KHF (cmt)

     => góc HEI= góc HFK

               mà góc HEI và HFK ở vị trí so le trong nên EI // KF

SONG RÙI ĐÓ NẾU CÓ CHỔ NÀO SAI, HOẶC KHÓ HIỂU THÌ NÓI VỚI MÌNH ĐỂ MÌNH GIẢI THÍCH CHO DỄ HIỂU 

5 tháng 5 2018

Bạn ơi ! ​

​Mình vừa trả lời ​

​Câu này của bạn rồi mà

​Tk cho mình nha ​​​​​

18 tháng 4 2020

B C D M H A E K N

a, Xét 2 tam giác vuông : ABM và DBM

BM chung

\(\widehat{ABM}=\widehat{DBM}\)( do BM là phân giác góc B )

\(\Rightarrow\Delta ABM=\Delta DBM\)( cạnh huyền - góc nhọn )

\(\Rightarrow BA=BD\)( 2 cạnh tương ứng )

b. Xét 2 tam giác vuông : ABC và DBE có :

BA = BD ( c/m ỏ câu a )

\(\widehat{B}\)chung

\(\Rightarrow\Delta ABC=\Delta DBE\)( cạnh góc vuông - góc nhọn )

c, Xét 2 tam giác vuông : AMK và DMH

AM = DM ( 2 cạnh tg ứng do ABM = DBM )

\(\widehat{AMK}=\widehat{DMH}\)( đối đỉnh )

\(\Rightarrow\Delta AMK=\Delta DMH\)( cạnh huyền - góc nhọn )

\(\Rightarrow MK=MH\)( 2 cạnh tg ứng )

Xét 2 tam giác vuông : MNK và MNH

MK = HM ( cmt )

MN chung

\(\Rightarrow\Delta MNK=\Delta MNH\)( cạnh huyền - góc vuông )

\(\Rightarrow\widehat{MNK}=\widehat{MNH}\)( 2 góc tg ứng )

=> NM là tia phân giác của \(\widehat{HMK}\)( đpcm ) (1)

d, Do AK = DH ( 2 cạnh tg ứng \(\Delta AMK=\Delta DMH\))

KN = HN ( 2 cạnh tg ứng \(\Delta MNK=\Delta MNH\))

\(\Rightarrow AN=AK+KN=DH+HN=DN\)

Xét 2 tam giác : ABN và DBN

AB = DB ( cmt )

BN chung 

AN = BN ( cmt )

\(\Rightarrow\Delta ABN=\Delta DBN\left(c-c-c\right)\)

\(\Rightarrow\widehat{ANB}=\widehat{DNB}\)( 2 góc tg ứng )

=> NB là tia phân giác \(\widehat{AND}\)( 2 )

Từ (1)(2) 

=> B , M , N thẳng hàng