Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
a: Xét ΔABC và ΔDEF có
góc A=góc D
góc B=góc E
=>ΔABC đồng dạng vơi ΔDEF
=>AB/DE=AC/DF=BC/EF
=>8/6=AC/DF=10/EF
=>EF=10*6/8=7,5cm và AC/DF=4/3
=>4DF=3AC
mà AC-DF=3
nên DF=9cm; AC=12cm
b: ΔABC đồng dạng với ΔDEF
=>S ABC/S DEF=(4/3)^2=16/9
=>S DEF=22,325625(cm2)
a) Xét ΔDEF có
EM là đường phân giác ứng với cạnh DF(gt)
nên \(\dfrac{DM}{DE}=\dfrac{MF}{EF}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DM}{5}=\dfrac{MF}{6}\)
mà DM+MF=DF(M nằm giữa D và F)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DM}{5}=\dfrac{MF}{6}=\dfrac{DM+MF}{5+6}=\dfrac{DF}{11}=\dfrac{5}{11}\)
Do đó:
\(\dfrac{DM}{5}=\dfrac{5}{11}\)
hay \(DM=\dfrac{25}{11}cm\)
Vậy: \(DM=\dfrac{25}{11}cm\)
\(C_{DAB}=\dfrac{1}{2}C_{DFE}=\dfrac{1}{2}\cdot30=15\left(cm\right)\)
Áp dụng PTG: \(EF=\sqrt{DE^2+DF^2}=13\left(cm\right)\)
Vì A,B là trung điểm DE,DF nên AB là đtb tg DEF
Do đó \(AB=\dfrac{1}{2}EF=\dfrac{13}{2}\left(cm\right);AD=\dfrac{1}{2}DE=\dfrac{5}{2}\left(cm\right);BD=\dfrac{1}{2}DF=6\left(cm\right)\)
Vậy \(P_{DAB}=AB+BD+DA=\dfrac{13}{2}+\dfrac{5}{2}+6=15\left(cm\right)\)
\(C_{DAB}=\dfrac{1}{2}C_{DEF}=\dfrac{1}{2}\cdot26\left(cm\right)=13\left(cm\right)\)
a: \(DE=\sqrt{15^2-12^2}=9\left(cm\right)\)
\(S_{DEF}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)
b: Xét tứ giác DMHN có
góc DMH=góc DNH=góc MDN=90 độ
nên DMHN là hình chữ nhật
c: Xét tứ giác DHMK có
DK//MH
DK=MH
Do đó: DHMK là hình bình hành