Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEDA vuông tại D và ΔEBA vuông tại B có
EA chung
\(\widehat{DEA}=\widehat{BEA}\)
Do đó: ΔEDA=ΔEBA
b: Ta có: ΔEDA=ΔEBA
nên DA=BA
c: Ta có: ΔEDA=ΔEBA
nên ED=EB
hay E nằm trên đường trung trực của DB(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của DB(2)
Từ (1) và (2) suy ra AE là đường trung trực của DB
a: Xét ΔEDA có ED=EA
nên ΔEDA cân tại E
b: Xét ΔDEB vuông tại D và ΔAEB vuông tại A có
BE chung
ED=EA
DO đó: ΔDEB=ΔAEB
Suy ra: DB=AB
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
a,xét tam giác vuông EDB(góc EDB=90 độ)và tam giác vuông EIB(góc EIB=90 độ)có:
EB chung
góc DEB =góc BEI(gt)
=> tam giác vuôngEDB= tam giác vuông IBF(góc FIB=90 độ)có:
góc DBH=góc IBF(đđ)
DB=BI(cmt)
=> tam giác vuông DBH= tam giác vuông IBF(góc nhọn kề cạnh góc vuông)
=>HB=BF(2 cah t/ứng)
c) có tam giác DBH vuông tại D(gt)
=>DB<HB(cah đối diện với góc lớn nhất)
mà BH=BF =>DB<BF
d,từ câu a=>ED=EI
có ED=EI , DH=IF=>ED+DH=EI+IF=EH=EF
=> tam giác EHF cân tại E(đl tam giác cân)
dựa vào trường hợp đặc biệt của tam giác cân:
có EB là tia phân giác=>EB c~ là đng trung tuyến (1)
mà K là trung điểm của HF=>K thuộc trung tuyến EB(2)
=>từ 1 và 2 ta có E,B,K đều thuộc trung tuyến EB
hay E,B,K thẳng hàng
------------------ // Tokyo Ghoul //----------------------------------
D E F B I H K
a, xét tam giác BIE và tam giác BDE có : BE chung
góc BDE = góc BIE = 90
góc BED = góc IEB do EB là phân giác của góc DEF (gt)
=> tam giác BIE = tam giác BDE (Ch-gn)
b, tam giác BIE = tam giác BDE (Câu a)
=> BI = BD (đn)
xét tam giác FBI và tam giác HBD có : góc FBI = góc HBD (đối đỉnh)
góc FIB = góc BDH = 90
=> tam giác FBI = tam giác HBD (2cgv)
=> HB = BF (đn)
c, BD = BI (câu b)
BI < BF do tam giác BFI vuông tại I
=> BD < DF
🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲