Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
D E F 4 6 H K I G
a, tam giác DEF vuông tại D, có đường cao DH
Áp dụng định lí Py ta go ta có :
\(EF^2=ED^2+EF^2=16+36=52\Rightarrow EF=2\sqrt{13}\)cm
Do EK là phân giác \(\Rightarrow\frac{ED}{EF}=\frac{DK}{KF}\)( mà \(FK=DF-DK=6-DK\))
\(\Rightarrow\frac{4}{2\sqrt{13}}=\frac{DK}{6-DK}\Rightarrow24-4DK=2\sqrt{13}DK\)
\(\Leftrightarrow24=6\sqrt{13}DK\Rightarrow DK=4\sqrt{13}\)cm
\(\Rightarrow KF=DF-KD=6-4\sqrt{13}=2\sqrt{13}\)cm
b, Xét tam giác DEK và tam giác HEI ta có :
^DEK = ^HEI ( EK là phân giác )
^EDK = ^EHI = 900
Vậy tam giác DEK ~ tam giác HEI ( g.g )
\(\Rightarrow\frac{DE}{HE}=\frac{EK}{EI}\)( tỉ số đồng dạng ) \(\Rightarrow DE.EI=EK.HE\)
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)