Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ˆA=12A^=12 sđ BCBC⏜ (tính chất góc nội tiếp)
⇒⇒ sđ BCBC⏜ =2ˆA=2.320=640=2A^=2.320=640
BC = BE (gt)
⇒⇒ sđ BCBC⏜ = sđ BEBE⏜ = 640
ˆB=12B^=12 sđ ACAC⏜ (tính chất góc nội tiếp)
⇒⇒ sđ ACAC⏜ =2ˆB=2.840=1680=2B^=2.840=1680
AC = CF (gt)
⇒⇒ sđ CFCF⏜ = sđ ACAC⏜ = 1680
sđ ACAC⏜ + sđ AFAF⏜ + sđ CFCF⏜ = 3600
⇒⇒ sđ AFAF⏜ =3600–=3600– sđ ACAC⏜ – sđ CFCF⏜ = 3600 – 1680. 2 = 240
Trong ∆ABC ta có: ˆA+ˆB+ˆC=1800A^+B^+C^=1800
\(\widehat{B}=\widehat{E}=65^0\)
\(\widehat{C}=\widehat{F}=55^0\)
\(\widehat{A}=\widehat{D}=60^0\)
Ta có : Tổng 3 góc của tam giác là 180o
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180}{6}=30\)
=> Góc A = 30o x 1 = 30o
Góc B = 30o x 2 = 60o
Góc C = 30o x 3 = 90o
Ta có: góc A, góc B, góc C lần lượt tỉ lệ vs 1;2;3
=> \(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}\)Và góc A + góc B + góc C= 180 độ(định lí tổng 3 góc trog 1 tam giác)
Áp dụng t/c của dãy tỉ số= nhau ta có:
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180^o}{6}=30^o\)
Khi đó : \(\frac{A}{1}=30^o\Rightarrow A=30\)
Làm tương tự vs góc B và góc C
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
Bạn tham khảo ở đây: https://olm.vn/hoi-dap/detail/1284076363999.html
ΔABCΔABC có ˆA+ˆB+ˆC=180oA^+B^+C^=180o
Theo để bài ˆA3=ˆB4=ˆC5A^3=B^4=C^5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
ˆA3=ˆB4=ˆC5=ˆA+ˆB+ˆC3+4+5=180o12=15oA^3=B^4=C^5=A^+B^+C^3+4+5=180o12=15o
hay: ˆA3=15o⇒ˆA=15o.3=45oA^3=15o⇒A^=15o.3=45o
ˆB4=15o⇒ˆB=15o.4=60oB^4=15o⇒B^=15o.4=60o
ˆC5=15o⇒ˆC=15o.5=75o
Đặt \(\widehat{D}=a;\widehat{E}=b;\widehat{F}=c\)
Số đo các góc D,E,F lần lượt tỉ lệ thuận với 3;1;2
=>\(\dfrac{a}{3}=\dfrac{b}{1}=\dfrac{c}{2}\)
Xét ΔDEF có \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\)
=>a+b+c=180
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{1}=\dfrac{c}{2}=\dfrac{a+b+c}{3+1+2}=\dfrac{180}{6}=30\)
=>\(a=30\cdot3=90;b=30\cdot1=30;c=30\cdot2=60\)
Vậy: \(\widehat{D}=90^0;\widehat{E}=30^0;\widehat{F}=60^0\)