K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

a) tam giác AEB vuông tại E có EH là đường cao \(\Rightarrow BH.BA=BE^2\)

tam giác CEB vuông tại E có EK là đường cao \(\Rightarrow BK.BC=BE^2\)

\(\Rightarrow BH.BA=BK.BC\)

b) \(BH.BA=BK.BC\Rightarrow\dfrac{BH}{BC}=\dfrac{BK}{BA}\)

Xét \(\Delta BHK\) và \(\Delta BCA:\) Ta có: \(\left\{{}\begin{matrix}\angle ABCchung\\\dfrac{BH}{BC}=\dfrac{BK}{BA}\end{matrix}\right.\)

\(\Rightarrow\Delta BHK\sim\Delta BCA\left(c-g-c\right)\)

b) \(\Delta BHK\sim\Delta BCA\Rightarrow\angle BHK=\angle BCA\)

Kẻ \(ED\bot CF\) 

Vì \(\angle EHF=\angle EDF=\angle HFD=90\Rightarrow EHFD\) là hình chữ nhật

\(\Rightarrow HD\) và EF cắt nhau tại trung điểm I của mỗi đường

Vì \(\Delta EHF\) vuông tại H có I là trung điểm EF 

\(\Rightarrow\angle FHI=\angle HFI=\angle AFE\left(1\right)\)

Xét \(\Delta AFC\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle AFC=\angle AEB=90\end{matrix}\right.\)

\(\Rightarrow\Delta AFC\sim\Delta AEB\left(g-g\right)\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\dfrac{AF}{AC}=\dfrac{AE}{AB}\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\Rightarrow\angle AFE=\angle ACB\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\angle FHI=\angle ACB=\angle BHK\Rightarrow\angle BHD=BHK\)

\(\Rightarrow H,D,K\) thẳng hàng \(\Rightarrow H,I,K\) thẳng hàng

undefined

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEA vuông tại E có EH là đường cao ứng với cạnh huyền AB, ta được:

\(BH\cdot BA=BE^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại E có EK là đường cao ứng với cạnh huyền AC, ta được:

\(BK\cdot BC=BE^2\)(2)

Từ (1) và (2) suy ra \(BH\cdot BA=BK\cdot BC\)

b) Xét ΔBHK và ΔBCA có 

\(\dfrac{BH}{BC}=\dfrac{BK}{BA}\)(cmt)

\(\widehat{HBK}\) chung

Do đó: ΔBHK\(\sim\)ΔBCA(c-g-c)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCAB vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(CH\cdot CB=AC^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔCDB vuông tại C có CA là đường cao ứng với cạnh huyền DB, ta được:

\(AD\cdot AB=CA^2\left(2\right)\)

Từ (1) và (2) suy ra \(CH\cdot CB=AD\cdot AB\)

10 tháng 10 2022

nho thay co giup em voi em dungf tu giac noi tiep khong dung

10 tháng 8 2017

b)    CD đi qua trung điểm của đường cao AH của D ABC

· Gọi F là giao của BD CA.

Ta có BD.BE= BA.BM (cmt)

= > B D B A = B M B E = > Δ B D M ~ Δ B A E ( c − g − c ) = > B M D = B E A

Mà BCF=BEA(cùng chắn AB)

=>BMD=BCF=>MD//CF=>D là trung điểm BF

· Gọi T là giao điểm của CD AH .

DBCD TH //BD  = > T H B D = C T C D  (HQ định lí Te-let) (3)

DFCD TA //FD  = > T A F D = C T C D  (HQ định lí Te-let) (4)

BD= FD (D là trung điểm BF ) (5)

· Từ (3), (4) và (5) suy ra TA =TH ÞT là trung điểm AH .

2 tháng 6 2018

a)    Chứng minh BA . BC = 2BD . BE

· Ta có: DBA+ ABC = 900 , EBM +ABC = 900

Þ DBA =EBM (1)

· Ta có: DONA = DOME (c-g-c)

Þ EAN= MEO

Ta lại có: DAB +BAE+ EAN  = 900, và BEM +BAE +MEO  = 900

Þ DAB= BEM (2)

· Từ (1) và (2) suy ra DBDA đồng dạng DBME (g-g)

= > B D B M = B A B E = > D B . B E = B A . B M = B A . B C 2 = > 2 B D . B E = B A . B C

1: góc ADC=góc AFC=90 độ

=>ADFC nội tiếp

1: Xét tứ giác BHEK có \(\widehat{BHE}+\widehat{BKE}=180^0\)

nên BHEK là tứ giác nội tiếp

2: Xét ΔBEA vuông tại E có EH là đường cao

nên \(BH\cdot BA=BE^2\left(1\right)\)

Xét ΔBEC vuông tại E có EK là đường cao

nên \(BK\cdot BC=BE^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BA=BK\cdot BC\)