Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(DH\perp BC\left(H\in BC\right)\)
△ABD và △HBD có:
\(\widehat{BAD}=\widehat{BHD}=90^o\\ BD:\text{cạnh chung}\\ \widehat{ABD}=\widehat{HBD}\)
\(\Rightarrow\text{△ABD = △HBD (cạnh huyền - góc nhọn)}\\ \Rightarrow AD=HD\)
Mà △HCD vuông tại H nên DC > DH (cạnh huyền lớn hơn cạnh góc vuông)
Từ đó suy ra DC > AD
tg adb can tai d ( a= b =36o ) => DB=DA
tg dbc can tai b ( d=c =72o ) => BD=BC
vậy AD =BC (dpcm)
(chuc ban hoc gioi)
A B C x y E D
a)Có AB\(\perp\)AC;xy\(\perp\) AC
=>AB//xy
=> ABD=DEC(2 góc sole trong) (P/s: Góc nhé.)
Mà ABD=DBC(Vì BD-phân giác ABC)
=>DBC=DEC
=>Tam giác CBE cân
Vậy...
b) Có BDC là góc ngoài tại đỉnh D của tam giác ABD
=>BDC=ABD+BAD
=>BDC=ABD+90o
=>BDC là góc tù
Xét tam giác ABC có BAD=90o
=>BD lớn nhất(quan hệ góc-cạnh đối diện)=>BD>BA(1)
Xét tam giác BDC có BDC là góc tù
=>BC lớn nhất=>BC>BD(2)
Từ (1)(2)=>BC>BA
Mà BC=CE(Vì tam giác CBE cân)
=>CE>AB
Vậy...
c) Xét tam giác DCE có DCE=90o
=>DE lớn nhất(qh góc-cạnh đối diện)
=>DE>CE
Mà CE>BD(cmt)
=>DE>BD
Kẻ từ B đến AC có BD là đường xiên;AD là hình chiếu của BD
Kẻ từ E đến AC có DE là đường xiên;DC là hình chiếu của DE
Mà DE>BD(cmt)
=>DC>AD(qh đường xiên-hình chiếu)
Vậy...
_Học tốt_
cân tại đâu?