K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

A B N E P Q C D

gọi AD là tia phân giác \(\widehat{BAN}\) 

\(\Delta BAN\)cân tại A có AD là tia phân giác nên cũng là đường trung tuyến \(\Rightarrow BD=DN\)

Mặt khác : BP = PC

Xét \(\Delta BNC\)có BD = DN ; BP = PC nên DP là đường trung bình

\(\Rightarrow DP//NC\)và \(DP=\frac{1}{2}NC\)

Mà AN = EC hay AE + EN = EN + NC \(\Rightarrow AE=NC\)

\(\Rightarrow DP=\frac{1}{2}AE\)hay \(DP=AQ\)( do AQ = QE )  ( 1 )

Ta có : \(DP//NC\)hay \(DP//AQ\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra AQPD là hình bình hành \(\Rightarrow PQ//AD\)

15 tháng 7 2017

a, HS tự chứng minh

b, M chính giữa  A B ⏜

=> NE là phân giác  B N A ^

=>  B N A N = E B E A  (tính chất đường phân giác) => BN.AE = NA.BE

c, HS tự chứng minh

d, Chứng minh ∆ABN:∆DBN => ĐPCM

22 tháng 2 2021

a) ta có : 

P là điểm chính giữa cung AC

=> cung AP = cung PC

N là điểm chính giữa cung BC

=> cung NB = NC

Mà : góc IBN = 1/2 cung PN = 1/2 (cung PC + cung CN )

        góc BIN = 1/2 ( cung BN + AP ) 

mà cung PC = cung AP 

      cung BN = cung CN

=> IBN = BIN

=> tam giác IBN là tam giác cân 

b) ta có : N là điểm chính giữa của cung BC 

=>MN là tia phân giác của góc BAC

=> EB/AE=BN/AN

=> đpcm

c) ta có : BNI cân 

NM là tia phân giác 

=> NM cũng là tia trung trực 

=> EBN = EIN 

MÀ IBN = BIN ( tam giác cân ) 

=> EBI=EIB (1) 

=> tam giác EBI cân 

mà P là điểm chính giữa cung AC

=> BP là đường phân giác của góc EBN

=> EBP = IBN hay EBI=IBN (2) 

từ (1) và (2) => IBN=EIB

mà 2 góc ở vị trí slt => EI//BC

d) Xét tam giác BAN và tam giác BDN

có N chung 

   góc BAN = BDN ( cùng chắn cung BN )

=> tam giác BAN đồng dạng tam giác BDN 

=> đpcm

 

22 tháng 2 2021

a, CM BIN=IBN = 1/2 sđ PN => tam giác BIN cân tại N 

b, CM đc MN vuông góc với BP mà tam giác BIN cân tại N => MN là đường trung trực của BI , E thuộc MN => BE=BI và EN là tia pg của BEI  

CM tam giác AEN ~ tam giác IEN ( g-g) =>AE.IN = EI.AN => AE.BN = EB.AN

c, CM đc EBP = PBC mà EBI =EIB nên EIB = IBD mà 2 góc này ở vị trí slt=> EI //BC

d, CM tam giác ABN~ tam giác BDN ( g-g) => AN/BN = AB /BD \dfrac{AN}{BN}=\dfrac{AB}{BD}

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).