Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AKMH có
\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)
=>AKMH là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MK//AC
Do đó: K là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MH//AB
Do đó: H là trung điểm của AC
Xét ΔABC có
M,K lần lượt là trung điểm của BC,BA
=>MK là đường trung bình cuả ΔABC
=>MK//AC và MK=AC/2
MK=AC/2
MK=MI/2
Do đó: AC=MI
Xét tứ giác ACMI có
MI//AC
MI=AC
Do đó: ACMI là hình bình hành
=>AM cắt CI tại trung điểm của mỗi đường
mà E là trung điểm của AM
nên E là trung điểm của CI
=>E,C,I thẳng hàng
c: Hình chữ nhật AKMH trở thành hình vuông khi AK=AH
mà \(AK=\dfrac{AB}{2}\) và \(AH=\dfrac{AC}{2}\)
nên AB=AC
-Đề sai rồi bạn, bạn chỉnh đề lại nhé, chứ bài này mình biết làm rồi (do mình làm nhiều rồi).
-Câu b sử dụng tam giác đồng dạng để c/m, câu d chu vi của nó bằng \(\dfrac{3}{2}a\)
(mình nhớ là vậy :v)
Bạn tự vẽ hình
a, Do góc MIA = góc IAK= góc AKM=900 nên tứ giác AKMI là hình chữ nhật
=> AM=IK ( tính chất hình chữ nhật)
b, Do AKMI là hình chữ nhật nên IM=AK, IM//AK=> IM//KH
Mà AK=HK(gt) nên IM=KH
Vì IM=KH, IM//KH nên IMHK là hình bình hành
c, Do O là giao điểm của hai đường chéo hình chữ nhật AKMI nên OI=OK
Do E là giao điểm của hai đường chéo hình bình hành KHMI nên EM=EK
Xét tam giác KMI có OI=OK, ME=KE nên OE là đường trung bình của tam giác KMI
=> OE//IM
Mà IM//AC nên OE//AC