Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có DF//AC
nên BF/FA=BD/DC=1/2
=>BF=1/2FA
=>AF/AB=2/3
Xét ΔCAB có DE//AB
nên CD/CB=CE/CA
=>CE/CA=2/3
=>CE=2/3CA
=>AE=1/3CA
=>AE/CE=1/2
=>AE/AC=1/3
b: \(\dfrac{AE}{EM}=\dfrac{AE}{\dfrac{1}{2}\cdot AC}=\dfrac{AE}{AC}\cdot\dfrac{1}{\dfrac{1}{2}}=\dfrac{1}{3}\cdot2=\dfrac{2}{3}=\dfrac{AF}{FB}\)
=>EF//BM
câu a/ cần dùng Thales với 2 đ/thảng song song đề cho là ra rồi, bạn tự làm nhá!
\(\frac{AF}{AB}=\frac{2}{3}\left(1\right)\)(tự CM) có \(\frac{AE}{AC}=\frac{1}{3}\Leftrightarrow\frac{AE}{2AM}=\frac{1}{3}\Leftrightarrow\frac{AE}{AM}=\frac{2}{3}\left(2\right)\)
(1)=(2) suy ra EF//BM( thales đổ)
Dễ thôi:vvv
a) Vì DF//AC
=> \(\dfrac{AF}{AB}=\dfrac{CD}{BC}=\dfrac{2}{1+2}=\dfrac{2}{3}\)
Vì DE//AB
=> \(\dfrac{AE}{AC}=\dfrac{BD}{BC}=\dfrac{1}{1+2}=\dfrac{1}{3}\)
b) Ta có: \(\dfrac{AE}{AC}=\dfrac{1}{3}\Leftrightarrow\dfrac{AE}{2AM}=\dfrac{1}{3}\Leftrightarrow\dfrac{AE}{AM}=\dfrac{2}{3}\)
Lại có: \(\dfrac{AF}{AB}=\dfrac{2}{3}\)
=> \(\dfrac{AF}{AB}=\dfrac{AE}{AM}\)
=> EF//BM(theo đ/lý Ta-lét đảo)
A A B B C C M M D D E E F F
a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)
\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)
Vậy nên DE + DF = 2AM.
b) Theo định lý Ta let ta có:
\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)