Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ADE có
Có AD=AE
=>Tam giác ADE cân tại A
Vì tam giác ADE và tam giác ABC đều cân tại A
=>B=C=D=E
Mà 2 góc B và D ở vị trí đồng vị nên DE//BC
b) Có DB=AB-AD
EC=AC-AE
Mà AB=AC
AD=AE
=>DB=EC
Xét tam giác MBD và tam giác MEC
Có BM=CM(gt)
B=C(tam giác ABC cân tại A)
DB=EC(cmt)
=>Tam giác MBD=Tam giác MEC
c)Vì tam giác MBD=tam giác MEC
=> DM=EM(2 cạnh đông vị)
Xét tam giác ADM và tam giác AEM
Có AD=AE(gt)
AM cạnh chung
DM=EM(cmt)
=>Tam giác ADM= Tam giácEDM
Tam giác ADE cân tại A (AD = AE)
=> \(ADE=90^0-\frac{DAE}{2}\)
mà \(ABC=90^0-\frac{BAC}{2}\)
=> ADE = ABC
mà 2 góc này ở vị trí đồng vị
=> DE // BC
AB = AC (tam giác ABC cân tại A)
AD = AE (gt)
=> AB - AD = AC - AE
=> BD = CE
Xét tam giác DBM và tam giác ECM có:
DB = EC (chứng minh trên)
DBM = ECM (tam giác ABC cân tại A)
BM = CM (M là trung điểm của BC)
=> Tam giác MBD = Tam giác MCE (c.g.c)
Xét tam giác AMD và tam giác AME có:
AM chung
MD = ME (Tam giác MBD = Tam giác MCE)
DA = EA (gt)
=> Tam giác AMD = Tam giác AME (c.g.c)
mk k vẽ hình nữa nha bn!!!
Bài 1:
a/ Xét ΔABC và ΔACE có:
\(\widehat{BAC}=\widehat{ECA}\) (so le trong do AE // BC)
AC: Cạnh chung
\(\widehat{BCA}=\widehat{EAC}\) (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> \(\widehat{ABC}=\widehat{ACB}\) = 50o
=> \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-50^o-50^o=80^o\) (1)
Có: \(\widehat{ACB}=\widehat{EAC}\) = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>\(\widehat{BAE}=\widehat{BAC}+\widehat{EAC}\) (2 góc kề nhau)
= 80o + 50o = 130o
Bài 1:
a/ Xét ΔABC và ΔACE có:
BACˆ=ECAˆBAC^=ECA^ (so le trong do AE // BC)
AC: Cạnh chung
BCAˆ=EACˆBCA^=EAC^ (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> ABCˆ=ACBˆABC^=ACB^ = 50o
=> BACˆ=180o−Bˆ−Cˆ=180o−50o−50o=80oBAC^=180o−B^−C^=180o−50o−50o=80o (1)
Có: ACBˆ=EACˆACB^=EAC^ = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>BAEˆ=BACˆ+EACˆBAE^=BAC^+EAC^ (2 góc kề nhau)
= 80o + 50o = 130o
A B C D E M
ta thừa nhận tính chất 2 tam giác cân chung đỉnh thì 2 góc đáy bằng nhau
ta có tam giác ADE cân tại A ( AD = AE )
và tam giác ABD cân tại A ( gt)
suy ra góc ADE = góc AED = góc ABC = góc ACB
ta lấy góc ADE = góc ABC
mà 2 góc này ở vị trí đồng vị suy ra DE//BC
b) ta có AD = AE (gt) và AB = AC 9gt)
suy ra AD-DB = AC-AE ( vì D nằm giữa A và B, E nằm giữa A và C )
hay DB = EC
\(\Delta MBD\)và \(\Delta MCE\)có
DB = EC ( cmt )
góc B = góc C ( tam giác cân )
BM = MC (gt)
do đó tam giác MBD = tam giác MCE (c.g.c )
c) tam giác MBD = tam giác MCE (cmt)
suy ra (2 cạnh tương ứng )
Tam giác AMD và tam giác AME có
DM = EM (cmt)
AD = AE (gt)
AM là cạnh chung
do đó tam giác AMD = tam giác AME (c.c.c)
chúc bạn học tốt