K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

Lời giải:

A) \(\overrightarrow{MA}+2\overrightarrow{MB}=\overrightarrow{0}\)

\(\Rightarrow \overrightarrow{MA}=-2\overrightarrow{MB}=2\overrightarrow{MB}\)

Do đó $M$ nằm trên đoạn thẳng $AB$ sao cho \(MA=2MB\)

B)

\(\overrightarrow{NA}+2\overrightarrow{NB}=\overrightarrow{CB}\)

\(\Leftrightarrow \overrightarrow{NA}+2\overrightarrow{NB}=\overrightarrow{CN}+\overrightarrow{NB}\)

\(\Rightarrow \overrightarrow{NA}+\overrightarrow{NB}=\overrightarrow{CN}\)

\(\Rightarrow \overrightarrow{NA}+\overrightarrow{NB}+\overrightarrow{NC}=\overrightarrow{0}\)

Đây là tính chất quen thuộc của trọng tâm tam giác. $N$ là trọng tâm tam giác $ABC$.

22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)

b) ta có : \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JC}+\overrightarrow{BI}+\overrightarrow{IJ}+\overrightarrow{JD}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{BI}\right)+\left(\overrightarrow{JC}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\) .........(1)

ta có : \(\overrightarrow{AD}+\overrightarrow{BC}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JD}+\overrightarrow{BI}+\overrightarrow{IJ}+\overrightarrow{JC}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{BI}\right)+\left(\overrightarrow{JC}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\) .........(2)

từ (1) (2) ta có \(2\overrightarrow{IJ}=\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\left(đpcm\right)\)

c) ta có : \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)

\(2\overrightarrow{OI}+2\overrightarrow{OJ}=\overrightarrow{0}\Leftrightarrow\overrightarrow{OI}+\overrightarrow{OJ}=\overrightarrow{0}\)

\(\Rightarrow O\) là trung điểm \(IJ\)