K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2021

Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK

4 tháng 12 2021

loz

Xét ABM và EMC có :

AM = ME

BM = CM

Góc AMB = góc CME ( đối đỉnh )

=> tam giac ABM = Tam giác EMC 

Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC

Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong 

=> AB // CE

c Xét tam giác AIB và tam gics CIK có :

 AI = IC 

BI = Ik

Góc AIB = góc CIK ( đối đỉnh )

=> tam giác AIB  = tam giác CIK

25 tháng 12 2020

lpl

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

17 tháng 12 2017

A B C M E K I Câu trả lời mình gửi sau:

31 tháng 10 2021

k biết

 

29 tháng 7 2018

làm phần a thui mn

29 tháng 7 2018

Ta có:

AE giao với BC tại M

Mà M là trung điểm của BC; M là trung điểm của AE (AM=ME)

=> ABEC là hình bình hành ( có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

=> AC // BE