K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

A H C B 5 12 20 Áp dụng định lý Pytago cho 2 tam giác ABH và ACH ta có AB=13 và HC=16 

suy ra chu vi ABC= AC+AB+BH+CH=20+13+5+16=54

7 tháng 4 2020

Theo mình nghĩ là đúng!:)

6 tháng 3 2018

Áp dụng định lí Py-ta-go vào tgABH ta được:

    \(AB^2=AH^2+BH^2\)

Mà AH=12;BH=5

\(\Rightarrow AB^2=12^2+5^2\)

\(\Rightarrow AB^2=144+25=169\)

\(\Rightarrow AB=13\left(cm\right)\left(doAB>0\right)\)

Áp dụng định lí Py-ta-go vào tg ACH ta được:

   

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = 122 + HC2

=> HC2 = 202 - 122

HC2 = 400 - 144 = 256 = 162

=> HC = 16 cm

Ta có : BC = HC + HB = 16 + 5 = 21 cm

Tam giác ABH vuông tại H nên :

AB2 = AH2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169 = 132

=> AB = 13 cm

Vậy chu vi tam giác ABC là :

AB + AC + BC = 13 + 20 + 21 = 54 (cm)

16 tháng 4 2020

chu vi là 54 cm

Giúp mình với !!! vẽ hình giúp mình với nha !! Bài 1: Cho tam giác ABC vuông tại A. Biết BC = 41cm; AC = 40cm. Tínha) Độ dài cạnh ABb) Chu vi tam giác ABCBài 2: Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Biết AC = 20cm; AH =12cm; HB = 5cma) Tính độ dài cạnh ABb) Tính chu vi tam giác ABCBài 3: Cho tam giác ABC có BC = 10cm , AB = 6cm và AC = 8cm . Tam giác ABC làtam giác gì ? Vì sao ?Bài 4: Cho tam giác ABC vuông tại A, có B 60...
Đọc tiếp

Giúp mình với !!! vẽ hình giúp mình với nha !! yeu

Bài 1: Cho tam giác ABC vuông tại A. Biết BC = 41cm; AC = 40cm. Tính
a) Độ dài cạnh AB
b) Chu vi tam giác ABC
Bài 2: Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Biết AC = 20cm; AH =
12cm; HB = 5cm
a) Tính độ dài cạnh AB
b) Tính chu vi tam giác ABC
Bài 3: Cho tam giác ABC có BC = 10cm , AB = 6cm và AC = 8cm . Tam giác ABC là
tam giác gì ? Vì sao ?
Bài 4: Cho tam giác ABC vuông tại A, có B 60  0 và AB = 5cm. Tia phân giác của góc
B cắt AC tại D. Kẻ DE vuông góc với BC (EBC) . Chứng minh:
a) ABD = EBD.
b) ABE là tam giác đều.
c) AEC cân.
d) Tính độ dài cạnh AC.
Bài 5: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( HBC )
a) Chứng minh: AHB =  AHC
b) Giả sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c) Trên tia đối của tia HA lấy điểm M sao cho HM = HA. Chứng minh  ABM
cân
d) Chứng minh BM // AC
Bài 6: Cho tam giác ABC vuông tại A, phân giác BE. Kẻ EK vuông góc với BC tại K.
Gọi M là giao điểm của BA và KE. Chứng minh :
a) ΔABE = ΔKBE
b) EM = EC
c) AK // MC
d) So sánh AE và EC
e) Gọi N là trung điểm của MC. Chứng minh 3 điểm B, E, N thẳng hàng
Bài 7: Cho ABC có AB = AC =10cm, BC = 12cm. Vẽ AH vuông góc BC tại H.
a) Chứng minh:  ABC cân.
b) Chứng minh    AHB AHC, từ đó chứng minh AH là tia phân giác của góc
A.
c) Từ H vẽ HM  AB ( ) M AB  và kẻ HN  AC ( ) N AC  . C/m:  BHM =  HCN
d) Tính độ dài AH.
e) Từ B kẻ Bx  AB, từ C kẻ Cy  AC chúng cắt nhau tại O. Tam giác OBC là
tam giác gì? Vì sao?

1
11 tháng 3 2022

bạn đăng tách ra nhé

 Bài 1 : 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=9cm\)

Chu vi tam giác ABC là 41 + 40 + 9 = 90  cm 

27 tháng 7 2015

dựa vào định lí Py ta go

29 tháng 6 2016

A B C H 16 12 5
Áp dụng định lí Pytago vào tam giác vuông AHC ta có :

\(AC^2=AH^2+HC^2\)
\(AC^2=12^2+16^2\)

\(AC^2=144+256\)

\(AC^2=400\)
\(AC=\sqrt{400}\)

\(AC=20\left(cm\right)\) 

Áp dụng định lí Pytago vào tam giác vuông AHB ta có :

\(AB^2=AH^2+BH^2\)

\(AB^2=12^2+5^2\)

\(AB^2=144+25\)

\(AB^2=169\)

\(AB=\sqrt{169}\)

\(AB=13\left(cm\right)\)
Chu vi tam giác ABC là:
\(AB+AC+BC=AB+AC+\left(BH+HC\right)=13+20+\left(5+16\right)=13+20+21=54\left(cm\right)\)

 

29 tháng 6 2016

theo định lí pitago trong 

tam giác vuông ABH ta có \(AB^2=BH^2+AH^2=5^2+12^2=169\)

=> AB=13

tam giác vuông AHC có : \(AC^2=AH^2+HC^2=12^2+16^2=400\)

=> AC=20

=> chu vi tam giác ABC là AB+BC+AC=13+5+16+20=54

A B H C

19 tháng 5 2017

A B H C

Xét \(\Delta\)AHC vuông tại H:

=> AC2 = HA2 + HC2

HC2 = AC2 - HA2

HC2 = 202 - 122 = 256

HC = \(\sqrt{256}\) = 16 (cm)

BC = BH + HC

BC = 5 + 16 = 21 (cm)

Xét \(\Delta\)AHB vuông tại H

=> AB2 = HA2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169

AB = \(\sqrt{169}\) = 13 (cm)

Chu vi của \(\Delta\)ABC là:

AC + CB + BA = 20 + 21 + 13

= 54 (cm)

Vậy chu vi của \(\Delta\)ABC là 54 cm.

21 tháng 1 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

∆AHB có ∠(AHB) =90°

Theo định lý pitago, ta có:

AB2=AH2+HB2

= 122+52=169

Vậy AB = 13 cm

∆AHC có ∠(AHC) =90o

Theo định lý pitago, ta có:

AC2=AH2+HC2

HC2=AC2-AH2=202-122=400-144=256

Vậy HC = 16cm

Ta có: BC = BH + HC = 5 +16 = 21cm

Chu vi tam giác ABC là: AB + AC + BC = 13 + 20 + 21 = 54cm