Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: \(MN=\dfrac{BC}{2}=6\left(cm\right)\)
Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình của ΔBAC
Suy ra: \(MP=\dfrac{AC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔABC có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔBAC
Suy ra: \(NP=\dfrac{AB}{2}=4\left(cm\right)\)
Chu vi tam giác MNP là:
C=MN+MP+NP=4+5+6=15(cm)
\(\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{1}{2}\)
\(\Leftrightarrow S_{ABC}=2\cdot S_{MNP}=2\cdot15=30\left(cm\right)\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
=>MN/BC=AM/AB=1/2
=>MN=1/2BC=6cm
Xét ΔABC có CP/CB=CN/CA
nên NP//AB
=>NP/AB=CP/CB=1/2
=>NP=1/2AB=4cm
Xét ΔABC có BM/BA=BP/BC
nên MP//AC
=>MP/AC=BP/BC=1/2
=>MP=1/2AC=5cm
=>\(C_{MNP}=4+5+6=15\left(cm\right)\)
Ta thấy \(\left\{{}\begin{matrix}MA=MB\\NA=NB\end{matrix}\right.\Rightarrow MN\) là đường trung bình ứng với cạnh \(BC\), hay \(MN=\frac{1}{2}BC=\frac{1}{2}\cdot12=6\left(cm\right)\).
Tương tự, MP và NP cũng là đường trung bình ứng với AC và AB, hay: \(\left\{{}\begin{matrix}MP=\frac{1}{2}\cdot AC=\frac{1}{2}\cdot10=5\left(cm\right)\\NP=\frac{1}{2}AB=\frac{1}{2}\cdot8=4\left(cm\right)\end{matrix}\right.\)
Từ đây, ta suy ra: \(C_{ABC}=4+5+6=15\left(cm\right)\)
Chúc bạn học tốt nha.