Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://h.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC.+G%E1%BB%8Di+M,N+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+l%C3%A0+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+c%C3%A1c+c%E1%BA%A1nh+AB,+AC.+CMR:+MN//BC,+MN=1/2BC&id=132687
Giải
Xét \(\Delta ABC\), có :
M, N lần lượt là trung điểm của AB và AC ( gt )
=> CM và BN lần lượt là các đường trung tuyến ứng với AB và AC ( đ/n )
Mà 2 đường trung tuyến này cắt nhau tại O ( gt )
=> O là trọng tâm tam giác ABC ( đ/n )
=> ON = \(\frac{1}{2}\) OB ( t/c )
Vậy \(\frac{ON}{OB}\) = \(\frac{1}{2}\) ( đpcm )
A M B C N O
\(\text{Ta có: M là trung điểm của AB}\Rightarrow CM\text{ là trung tuyến}\left(1\right)\)
\(\text{N là trung điểm của AC}\Rightarrow BN\text{ là trung tuyến}\left(2\right)\)
\(\text{Lại có: }BN\cap CM=\left\{O\right\}\left(3\right)\)
\(\text{Từ (1), (2) và (3)}\Rightarrow O\text{ là trọng tâm của }\Delta ABC\)
\(\Rightarrow OB=\dfrac{2}{3}BN\left(\text{tính chất đường trung tuyến}\right)\left(4\right)\)
\(\Rightarrow ON=\dfrac{1}{3}BN\Rightarrow2.ON=\dfrac{2}{3}BN\left(5\right)\)
\(\text{Từ (4) và (5)}\Rightarrow OB=2.ON\Rightarrow ON=\dfrac{1}{2}OB\)
\(\text{Vậy }ON=\dfrac{1}{2}OB\)
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
a: Xét ΔNBC và ΔMCB có
NC=MB
\(\widehat{NCB}=\widehat{MBC}\)
BC chung
Do đó: ΔNBC=ΔMCB
Suy ra: CN=MB
b: Xét ΔOBC có \(\widehat{OCB}=\widehat{OBC}\)
nên ΔOBC cân tại O