Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích tam giác ANC = 1/3 diện tích tam giác AMC
vì hai tam giác này có chung chiều cao hạ từ đỉnh C mà đáy AN = 1/3 đáy AM
Diện tích tam giác AMC là :
36 x 3 = 108 ( cm2 )
Diện tích tam giác AMC = 2/3 diện tcihs tam giác ABC
vì 2 tam giác này có chung chiều cao hạ từ đỉnh A mà đáy MC = 2/3 đáy BC
a) Diện tích tam giác ABC là
108 : 2 x3 = 162 ( cm2 )
b) Nối B với N ta có diện tích tam giác BNM = 1/3 diện tích tam giác BNC
Vì hai tam giác này co chung chiều cao hạ từ đỉnh N mà đáy BM= 1/3 đáy BC
Diện tcihs tam giác ANC = 1/3 diện tcihs tam giác BNC
Diện tích tam giác ANC là :
36 x 3 = 108 ( cm2)
Diện tích tam giác ABN là :
162 - ( 108 + 36 ) = 18 ( cm2 )
Ta thấy hai tam giác ANC và BNC có chung cạnh NC mà diện tích tam giác ANC = 1/3 diện tích tam giác BNC
Nên chiều cao hạ từ đỉnh A = 1/3 chiều cao hạ từ đỉnh B ( AH = 1/3 BP)
Diện tích tam giác AKN = 1/3 diện h stam giác BNM
cạnh đáy KN mà chiều cao AH = 1/3 chiều cao BP
Ta thấy hai tam giác AKN và BKN có chung chiều cao hạ từ đỉnh N mà diện tích tam giác AKN = 1/3 diện tích tam giác
BKN nên đáy AK = 1/3 đáy BK vậy AK/BK = 1/3
bn tam khảo link này nha: https://olm.vn/hoi-dap/detail/79277830725.html [ bn cố gắng viết giống vậy na :)) ]
Vì BE=1313× BC mà ABE và ABC chung chiều cao hạ từ A
nên SABESABE=1313 ×=217,5 : 3 = 72,5(cm2)
⇒SADESADE+SBDESBDE=SABESABE \
⇒SADESADE= SABESABE-SBEDSBED
⇒SADESADE =72,5 – 14,55 = 57,95(cm2)
⇒ ADE và ABE chung chiều cao hạ từ E nên SADESABESADESABE=ADABADAB
⇒AB =SADESABESADESABE×AD=72,557,9572,557,95×8=10 (cm)
Cho tam giác ABC có diện tích 240 cm2. Trên BC lấy điểm D sao cho BD=3DC. Tínhdiện tích tam giác ABD. (ĐS cm2) là bài 3. Cho tam giác ABC có diện tích là 400 cm2. Điểm M trên AC sao cho 2xAM=3xCM.Tính diện tích tam giác ABM. (ĐS: cm2) là bài 4. Cho tam giác ABC có diện tích 720 cm2. Trên BC lấy M sao cho BM=1/2 CM. NốiAM , trên AM lấy N sao cho AN=3NM. Tính diện tích tam giác ABN. (ĐS: cm2) là bài 5 nhá các bạn. mình quên cách ra
A B C M G N
a) Xét tam giác ABG và tam giác BGM có chung đường cao hạ từ B xuống đáy AM
Mà \(AG=2GM\) \(\Rightarrow S_{\Delta AGB}=2S_{\Delta BGM}\)
\(\Rightarrow S_{\Delta BGM}=\frac{1}{2}S_{\Delta AGB}=\frac{1}{2}\times20=10\left(cm^2\right)\)
Ta có \(S_{\Delta ABM}=S_{\Delta ABG}+S_{\Delta BGM}=20+10=30\left(cm^2\right)\)
Xét \(\Delta ABM\)và \(\Delta ACM\)có chung đường cao hạ từ A xuống cạnh đáy
Mà BM = MC
\(\Rightarrow S_{\Delta ACM}=S_{\Delta ABM}=30\left(cm^2\right)\)
Xét \(\Delta ACG\)và \(\Delta MCA\)có chung đường cao hạ từ C xuống đáy AM
Mà \(GA=\frac{2}{3}AM\Rightarrow S_{\Delta AGC}=\frac{2}{3}S_{\Delta AMC}=\frac{2}{3}\times30=20\left(cm^2\right)\)
Lại có \(\Delta CGN\)và \(\Delta AGC\)có chung đường cao hạ từ G xuống AC
Mà \(NC=\frac{1}{2}AC\Rightarrow S_{\Delta CNG}=\frac{1}{2}S_{\Delta AGC}=\frac{1}{2}\times20=10\left(cm^2\right)\)
b) Ta có BM = MC
Mà AM = 2GM
\(\Rightarrow\)G là trọng tâm của tam giác ABC
Lại có BG cắt AC tại N
\(\Rightarrow\)BN là đường trung tuyến tam giác ABC
\(\Rightarrow AN=CN\left(1\right)\)
Mặt khác \(BM=MC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)MN là đường trung bình của tam giác CAB
\(\Rightarrow MN=\frac{1}{2}AB\)hay \(AB=2MN\)