Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHCE có
I là trung điểm của đường chéo AC
I là trung điểm của đường chéo HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b: Xét ΔAHB có
K là trung điểm của AB
M là trung điểm của BH
Do đó: KM là đường trung bình của ΔAHB
Suy ra: KM//AH
hay KM\(\perp\)BH
Xét ΔAHC có
I là trung điểm của AC
N là trung điểm của HC
Do đó: IN là đường trung bình của ΔAHC
Suy ra: IN//AH
hay IN\(\perp\)BC
Xét ΔABC có
K là trung điểm của AB
I là trung điểm của AC
Do đó: KI là đường trung bình của ΔBAC
Suy ra: KI//BC
hay KI\(\perp\)AH
mà AH//KM
nên KI\(\perp\)KM
Xét tứ giác KINM có
\(\widehat{IKM}=\widehat{KMN}=\widehat{INM}=90^0\)
Do đó: KINM là hình chữ nhật
Suy ra: KN=IM
A B M N C H D E
a/
\(HM\perp AB;AC\perp AB\Rightarrow AN\perp AB\) => HM//AN
\(HN\perp AC;AB\perp AC\Rightarrow AM\perp AC\) => HN//AM
=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có \(\widehat{A}=90^o\) (gt)
=> AMHN là HCN (hình bình hành có 1 góc trong bằng 90o là HCN)
b/ Nối A với D và A với E
Xét tg vuông AMD và tg vuông AMH có
MD=MH; AM chung => tg AMD = tg AMH (hai tg vuông có hai cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{MAD}=\widehat{MAH}\)
Tương tự khi xét tg vuông ANH và tg vuông ANE
=> tg ANH = tg ANE \(\Rightarrow\widehat{NAH}=\widehat{NAE}\)
\(\Rightarrow\widehat{MAD}+\widehat{NAE}=\widehat{MAH}+\widehat{NAH}=\widehat{A}=90^o\)
\(\Rightarrow\widehat{MAD}+\widehat{NAE}+\widehat{A}=\widehat{DAE}=90^o+90^o=180^o\)
=> D; A; E thẳng hàng
c/
Xét tg vuông MBD và tg vuông MBH có
MD=MH (gt)
MB chung
=> tg MBD = tg MBH (hai tg vuông có hai cạnh góc vuông tương ứng bằng nhau) => BD=BH
Xét tg ADB và tg AHB có
tg AMD = tg AMH (cmt) => AD=AH
AB chung
BD=BH (cmt)
=> tg ADB = tg AHB \(\Rightarrow\widehat{ADB}=\widehat{AHB}=90^o\Rightarrow BD\perp DE\)
C/m tương tự ta cũng có \(CE\perp DE\)
=> BD//CE (cùng vuông góc với DE)
=> BDEC là hình thang
d/
Ta có
tg AMD = tg AMH (cmt) => AD=AH
c/m tương tự có
tg AHN = tg ANE => AE=AH
=> AD=AE
Xét tg vuông DHE có
AD=AE (cmt)
\(AH=AD=AE=\dfrac{DE}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Ta có
MD=MH; NE=NH => MN là đường trung bình của tg DHE
\(\Rightarrow MN=\dfrac{DE}{2}\)
\(\Rightarrow MN+AH=\dfrac{DE}{2}+\dfrac{DE}{2}=DE\)
a) Xét tứ giác AEHF có
\(\widehat{FAE}=90^0\)
\(\widehat{AFH}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ΔEHB vuông tại E(gt)
mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)
nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay \(BC=\sqrt{100}=10cm\)
Xét ΔABC có AH là đường cao ứng với cạnh BC nên
\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay \(AH=\dfrac{48}{10}=4.8cm\)
Vậy: AH=4,8cm
b) Xét tứ giác AEHF có
\(\widehat{EAF}=90^0\)(ΔABC vuông tại A, E∈AB, F∈AC)
\(\widehat{AEH}=90^0\)(HE⊥AB)
\(\widehat{AFH}=90^0\)(HF⊥AC)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇒AH=EF(Hai đường chéo của hình chữ nhật AEHF)
mà AH=4,8cm(cmt)
nên EF=4,8cm
Vậy: EF=4,8cm
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay MN//EF
Suy ra MNEF là hthang
Lại có \(MN=\dfrac{1}{2}BC\) và \(EF=EH+HF=\dfrac{1}{2}\left(BH+HC\right)=\dfrac{1}{2}BC\)
Do đó MNEF là hbh
Lại có ME là đtb tg ABH nên ME//AH
Mà AH⊥BC và MN//BC nên ME⊥MN
Vậy MNEF là hcn