Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm của hình bình hành ABCD :
Vì M là trung điểm của AB và \(AC\cap BD=I\) => I là trọng tâm tg ABC : => \(\overrightarrow{IA}+\overrightarrow{ID}+\overrightarrow{IB}=0\)
: \(\overrightarrow{AI}=\frac{2}{3}\overrightarrow{AO}=\frac{2}{3}+\frac{1}{2}\overrightarrow{AC}=\frac{1}{3}\overrightarrow{AC}\)=> loại A,C,D
=> Chọn B
\(\overrightarrow{JA}=-\frac{2}{3}\overrightarrow{JC}\Rightarrow\overrightarrow{JA}=\frac{2}{5}\overrightarrow{CA}\)
\(\overrightarrow{IB}=\overrightarrow{BA}\Rightarrow\overrightarrow{IA}=2\overrightarrow{BA}\)
a/ \(\overrightarrow{IJ}=\overrightarrow{IA}+\overrightarrow{AJ}=2\overrightarrow{BA}-\frac{2}{5}\overrightarrow{CA}=\frac{2}{5}\overrightarrow{AC}-2\overrightarrow{AB}\)
b/Theo tính chất trọng tâm \(3\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{AC}\Rightarrow\overrightarrow{AG}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{IG}=\overrightarrow{IA}+\overrightarrow{AG}=2\overrightarrow{BA}+\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=\frac{1}{3}\overrightarrow{AC}-\frac{5}{3}\overrightarrow{AB}\)
Đok đề cứ thấy sai sai... Sao cho J lại thoả mãn \(\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AC}-\frac{2}{3}\overrightarrow{AB}\) :))