Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2a. Theo đầu bài ta có hình:
A B C M N P D E F
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )
1) Do BN = 1/4 BC => SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB => MB = 3/4 AB => SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC
2) Do AM = 1/4 AB => SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA => PA = 3/4 CA => SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC
3) Do CP = 1/4 CA => SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC => NC = 3/4 BC => SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC
Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC
A B C S1 S2 S3 D E F x c-x y a-y z b-z
Kí hiệu như trên hình vẽ.
Giả sử ngược lại, trong ba tam giác S1,S2,S3 không có tam giác nào có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC.
Khi đó ta có : \(\frac{S_1.S_2.S_3}{S}>\frac{1}{64}\)
Hay : \(\frac{x\left(b-z\right).y\left(c-x\right).z\left(a-y\right)}{a^2b^2c^2}>\frac{1}{64}\) (*)
Mặt khác, ta có : \(x\left(c-x\right)\le\frac{\left(x+c-x\right)^2}{4}=\frac{c^2}{4}\)
Tương tự \(y\left(a-y\right)\le\frac{a^2}{4}\) , \(z\left(b-z\right)\le\frac{b^2}{4}\)
Nhân theo vế : \(x\left(c-x\right).y\left(a-y\right).z\left(b-z\right)\le\frac{a^2b^2c^2}{64}\)
hay \(\frac{x\left(b-z\right).y\left(c-x\right).z\left(a-y\right)}{a^2b^2c^2}\le\frac{1}{64}\) (vô lí - trái với (*))
Vậy giả thiết thiết phản chứng sai. Ta có đpcm.
bạn tự vẽ hình nhé
a)ΔABCđều (gt) nên AB = BC = AC ; góc A = góc B = góc C = 60 0 mà AD = BE = CF (gt)
=> AB - AD = BC - BE = AC - CF <=> BD = CE = AF
ΔADF,ΔBEDcó AD = BE (gt) ; góc DAF = góc EBD = 60 0 (cmt) ; AF = BD (cmt)
nên ΔADF = ΔBED c.g.c
=> DF = ED (2 cạnh tương ứng) (1)
ΔADF,ΔCFEcó AD = CF (gt) ; góc DAF = góc FCE = 60 0 (cmt) ; AF = CE (cmt)
nên ΔADF = ΔCFE c.g.c
=> DF = FE (2 cạnh tương ứng) (2).Từ (1) và (2),ta có DF = FE = ED.
VậyΔDEFđều
b) không biết làm
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ