K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2020

câu này có nhiều r 

bạn chỉ cần kẻ 1 đường vuông góc là ra

4 tháng 8 2016

minh biet lam cau b)

A B C D N M

ke phan giac AD  , BM vuong goc AD , CN vuong goc AD

sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)

ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)

=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)

dau = xay ra  <=> AD vuong goc BC  => AD la duong phan giac ,la  duong cao  => tam giac ABC can tai  A => AB=AC => b=c

tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)

=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)

ap dung cosi cjo 2 so duong   b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)

=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)

\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)

dau = xay ra <=> a=b=c hay tam giac ABC deu

5 tháng 8 2016

nhìn bài toán kho hiểu nhỉ ???

31 tháng 7 2016

Hỏi đáp Toán

31 tháng 7 2016

pn ơi lm hộ t nốt bài 2 câu b,c đc k

31 tháng 7 2016

Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)

cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)

3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)

từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)

31 tháng 7 2016

\(\cot B+\cot C=\frac{BD}{AD}+\frac{CD}{AD}=\frac{BC}{AD}=\frac{BC}{3GH}\ge\frac{2GH}{3GH}=\frac{2}{3}\)
VỚI D LÀ CHÂN ĐƯỜNG CAO HẠ TỪ A XUÔNG BC , G LÀ TRỌNG TÂM , H LÀ CHÂN ĐƯỜNG CAO HẠ TỪ G XUỐNG BC
B2 THÌ GIẢI BÌNH THƯỜNG =='. ĐỌC THÊM NCPT 9 NHÉ 

11 tháng 10 2019

A B C D M N c b a

Kẻ BM và CN vuông góc với AD

a)  AC.sin\(\frac{A}{2}\)=CN \(\le\) CD ; AB.sin\(\frac{A}{2}\)=BM \(\le\) BD 

=> (AC+AB)sin\(\frac{A}{2}\)\(\le\) CD+BD = BC hay (b+c)sin\(\frac{A}{2}\)\(\le\)a <=> sin\(\frac{A}{2}\le\frac{a}{b+c}\)

dấu '=' xảy ra khi M,N, D trùng nhau hay tam giác ABC cân ở A

b) làm tương tự ta có sin\(\frac{B}{2}\le\frac{b}{a+c}\); sin\(\frac{C}{2}\le\frac{c}{a+b}\)

=> sin\(\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{a.b.c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)  (1)

mà (a+b)(b+c)(c+a) \(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8a.b.c => (1) \(\le\frac{1}{8}\)

dấu '=' khi a=b=c hay tam giác ABC là tam giác đều

c) xét 2 tam giác CND và tam giác BMD có CN // BM ( đều vuông góc với AD) nên \(\widehat{NCD}=\widehat{MBD}\); lại có \(\widehat{NDC}=\widehat{BDM}\)

=> là 2 tam giác đồng dạng => \(\frac{DN}{DM}=\frac{NC}{MB}=\frac{AC.sin\frac{A}{2}}{AB.sin\frac{A}{2}}=\frac{b}{c}=>DN=DM.\frac{b}{c}\)

AD = AM+MD => \(\frac{b}{c}AD=\frac{b}{c}AM+\frac{b}{c}MD\)

AD= AN-ND

=>cộng vế theo vế ta được  AD(\(\frac{b}{c}+1\)) = \(\frac{b}{c}\)AM+\(\frac{b}{c}MD\)+ AN - ND =  \(\frac{b}{c}AM+AN\)\(\frac{b}{c}ABcos\frac{A}{2}+ACcos\frac{A}{2}\)=\(\frac{b}{c}.c.cos\frac{A}{2}+bcos\frac{A}{2}\)= 2b.\(cos\frac{A}{2}\)

=> AD(\(\frac{b+c}{c}\)) = 2b\(cos\frac{A}{2}\) <=> AD= \(\frac{2bc.cos\frac{A}{2}}{b+c}\)

7 tháng 7 2016

ta có A+B+C = 2

nên C=2 -(A+B)

   nên ta có sin(A+B)=sinC , cos(A+B)=-cosC

ta có sin2A+sin2B+sin2C

      =2sin(A+B)cos(A-B) + 2 sinCcosC

      =2sinCcos(A-B)+2sinCcosC

      =2sinC ( cos(A-B) + cosC)

      =2sinC ( cos(A-B) - cos(A+B))

      =2sinC.2sinAsinB

      =4sinAsinBsinC

7 tháng 7 2016

Em chịu ạ