Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIB và ΔAIC có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAHI=ΔAKI
=>IH=IK
c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có
IH=IK
\(\widehat{HIN}=\widehat{KIM}\)
Do đó: ΔHIN=ΔKIM
=>IN=IM và HN=KM
ΔAHI=ΔAKI
=>AH=AK
AH+HN=AN
AK+KM=AM
mà AH=AK và HN=KM
nên AN=AM
=>A nằm trên đường trung trực của NM(1)
IN=IM(cmt)
nên I nằm trên đường trung trực của MN(2)
PN=PM
=>P nằm trên đường trung trực của MN(3)
Từ (1),(2),(3) suy ra A,I,P thẳng hàng
a) xét tam giác ABI và tam giác HBI có:
\(\widehat{BAI}\)= \(\widehat{BHI}\)(90 độ)
\(\widehat{B1}\)= \(\widehat{B2}\)( BI là tia phân giác của \(\widehat{ABC}\))
BI chung
=> tam giác ABI = tam giác HBI (cạnh huyền góc nhọn)
c) xét tam giác HIC cuông tại I có
HI là cạnh góc vuông
IC là cạnh huyền
vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất
=> IC > HI
Mà IA = IH (tam giác BAI = tam giác BHI)
=> AI < IC
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
ta kẻ đường phân giác góc A cắt BC tại F
xét tam giác AIH và tam giác AIK
có : góc AHI =góc AKI (=90 độ)
AI chung
góc HAI= góc KAI(đường phân giác góc A cát BC tại F)
=>tam giác AHI = tam giác AKI(ch-gn)
=>IH=IK(2 cạnh tương ứng)
)Ta có tam giác ABC cân tại C nên
=>IC là đường trung tuyến
=>IA=IB
b)Áp dụng định lí Py-ta-go vào tam giác IBC vuông tại I, ta có:
BC2=IB2+IC2
102=62+IC2
100=36+IC2
=>IC2=100-36
=>IC2=64
=>IC=
Xét △AIH vuông tại H và △AIK vuông tại K
Có: HAI = KAI (gt)
AI là cạnh chung
=> △AIH = △AIK (ch-gn)
=> AH = AK (2 cạnh tương ứng)
Xét △AHK có: AH = AK (cmt) => △AHK cân tại A => \(\widehat{AHK}=\frac{180^o-\widehat{HAK}}{2}\)(1)
Xét △AKE vuông tại K và △AHF vuông tại H
Có: EAF là góc chung
AK = AH (cmt)
=> △AKE = △AHF (cgv-gnk)
=> AE = AF (2 cạnh tương ứng)
Xét △AEF có: AE = AF (cmt) => △AEF cân tại A => \(\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{AHK}=\widehat{AEF}\)
Mà 2 góc này nằm ở vị trí đồng vị
=> HK // EF (dhnb)