Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AD là phân giác BAC => DAC = DAB = BAC : 2 hay 2DAC = 2DAB = BAC
Vì CE là phân giác BCA => BCE = ECA = BCA : 2 hay 2BCE = 2ECA = BCA
Xét △ABC vuông tại B có: BAC + BCA = 90o (2 góc nhọn trong △ vuông)
=> 2DAC + 2ECA = 90o => DAC + ECA = 45o
Xét △ICA có: ICA + IAC + CIA = 180o (tổng 3 góc trong tam giác)
=> 45o + CIA = 180o => CIA = 135o
b, Xét △ABC có BCx là góc ngoài của △ tại đỉnh C, ta có: BCx = CBA + BAC => BCx = 90o + BAC
Vì CK là phân giác BCx \(\Rightarrow\frac{\widehat{BCx}}{2}=\frac{90^o+\widehat{BAC}}{2}\)\(\Rightarrow\widehat{BCK}=45^o+\widehat{DAC}\)
Xét △KCA có: CKA + KCA + CAK = 180o (tổng 3 góc trong △)
=> CKA + KCD + DCI + ICA + CAK = 180o
=> CKA + 45o + DAC + DCI + ICA + CAK = 180o
=> CKA + (DAC + ICA) + (DCI + CAK) = 135o
=> CKA + 45o + 45o = 135o
=> CKA = 45o
a: ΔBAC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(2\left(\widehat{IAC}+\widehat{ICA}\right)=90^0\)
=>\(\widehat{IAC}+\widehat{ICA}=45^0\)
Xét ΔIAC có \(\widehat{IAC}+\widehat{ICA}+\widehat{CIA}=180^0\)
=>\(\widehat{CIA}=180^0-45^0=135^0\)
b: CI và CK là hai tia phân giác của hai góc kề bù
=>\(\widehat{ICK}=90^0\)
\(\widehat{CIK}+\widehat{CIA}=180^0\)
=>\(\widehat{CIK}=45^0\)
Xét ΔCKI vuông tại C có \(\widehat{CIK}=45^0\)
nên ΔCKI vuông cân tại C
=>\(\widehat{CKI}=\widehat{CKA}=45^0\)
(Hình tự vẽ )
a) Xét tam giác ABC có : góc A + góc ABC + góc ACB =180* ( Tổng 3 góc cảu 1 tam giác )
=>góc ABC + góc BCA =130*
=>1/2 góc ABC + 1/2 góc BCA = 65* =>góc IBC + Góc BCI = 65*
tam giác BIC có : BIC+IBC+BCI=180*(Tổng 3 góc của 1 tam giác )
=>BIC=115*
b) có BIC =115* =>CID=65*
tam giÁC IDC vuông tại C có CDI+BDC =90*
=>BDC =25*
a)
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
b) Xét tg ABC có:
+ BD là đườg cao (BD vuông góc AC)
+ CE là đg cao (CE vuông góc AB)
Mà BD giao CE tại I (gt)
=> I là trực tâm
=> AI là đường cao
Xét tg ABC cân tai A có: AI là đường cao (cmt)
=> AI cũng là đường pg góc BAC ( Tc tg cân)