K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

a) "Nếu ABC là một tam giác đều thì AB = BC = CA", cả hai mệnh đề đều đúng

b) "Nếu \(\widehat{C}>\widehat{A}\) thì AB > BC". Cả hai mệnh đề đều đúng

c) "Nếu ABC là một tam giác vuông thì \(\widehat{A}=90^0\)"

Nếu tam giác ABC vuông tại B (hoặc C) thì mệnh đề đảo sai

19 tháng 11 2019

A B C M E N F P D

Gọi AD là phân giác trong của \(\Delta\)ABC. Kéo dài DM cắt BE và CA lần lượt tại N và F, AN cắt BC tại P.

Dễ thấy \(\Delta\)ADB cân tại D có trung tuyến DM, suy ra DM là trung trực của AB

Do vậy ^DAN = ^DBN = 90o suy ra AP vuông góc AD hay AP là phân giác ngoài của \(\Delta\)ABC

Từ đó \(\left(BCPD\right)=-1\). Áp dụng phép chiếu xuyên tâm N: \(\left(BCPD\right)\rightarrow\left(ECFA\right)\)

Khi đó (ECFA) là hàng điều hòa. Mà ^AMF = 90o nên MA chính là phân giác của ^CME (đpcm).

21 tháng 9 2020

\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AE}\)

\(\overrightarrow{AM}+\overrightarrow{AN}=2\overrightarrow{AE}\)

\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AM}+\overrightarrow{AN}\)

21 tháng 8 2021

A B C H O K L N M E F G

Trên EF lấy điểm G sao cho \(HG\perp OA\) (Định nghĩa lại điểm G)

Ta thấy đường tròn (HAC) và (O) đối xứng nhau qua AC, suy ra AOCK là hình thoi

Từ đó \(\widehat{OAM}=180^0-\widehat{AMK}=\widehat{AHK}=90^0-\widehat{ACH}=\widehat{BAC}\)

Suy ra \(\widehat{CAM}=\widehat{BAO}=\widehat{CAH}\) hay AC là phân giác của \(\widehat{HAM}\)

Vì MK là phân giác ngoài của \(\widehat{AMH}\) do K là điểm chính giữa cung AMH nên C là tâm bàng tiếp góc A của \(\Delta AHM\)

Do đó \(\frac{CE}{CA}=\frac{HE}{HA}\). Hoàn toàn tương tự \(\frac{BA}{BF}=\frac{HA}{HF}\)

Mặt khác AMHN là hình bình hành do (AKH),(ALH) đối xứng nhau qua trung điểm AH, đồng thời

\(\widehat{MAN}=\widehat{MHN}=\widehat{AHM}+\widehat{AHN}=180^0-\widehat{AOB}+180^0-\widehat{AOC}=2\widehat{BAC}=2\widehat{OAM}\)

Suy ra AO là phân giác của \(\widehat{MAN}\), mà \(HG\perp AO\) nên HG là phân giác ngoài của \(\widehat{MHN}\)

Do vậy \(\frac{GF}{GE}=\frac{HF}{HE}\). Vậy ta có \(\frac{CE}{CA}.\frac{BA}{BF}.\frac{GF}{GE}=1\), suy ra G,B,C thẳng hàng.