Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=92+122=225
BC=15cm
* AH.BC=AB.AC
AH.15=9.12
AH.15=108
AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)
b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)
Bài 2:
\(\cos\widehat{A}=\dfrac{3\sqrt{39}}{20}\)
\(\tan\widehat{A}=\dfrac{7}{20}:\dfrac{3\sqrt{39}}{20}=\dfrac{7}{3\sqrt{39}}=\dfrac{7\sqrt{39}}{117}\)
\(\cot\widehat{A}=\dfrac{3\sqrt{39}}{7}\)
A B C H
a) Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=5^2+12^2=169\)
\(\Leftrightarrow\)\(BC=13\)
b) Áp dụng hệ thức lượng ta có:
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=4\frac{8}{13}\)
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=\frac{25}{13}\)
c) \(sinB=\frac{AC}{BC}=\frac{12}{13}\) \(tanB=\frac{AC}{AB}=\frac{12}{5}\)
\(cosB=\frac{AB}{BC}=\frac{5}{13}\) \(cotB=\frac{AB}{AC}=\frac{5}{12}\)
a,+)Áp dụng định lí py ta go vào tam giác vuông ABC ta có :
BC=\(\sqrt{AC^2-AB^2}\)
\(\Rightarrow BC=\sqrt{12^2-9^2}\)
\(\Rightarrow BC=3\sqrt{7}\)
+) Áp dụng hệ thức lượng trong tam giác ABC có:
\(BH\times AC=AB\times BC\)
\(\Leftrightarrow BH\times12=9\times3\sqrt{7}\)
\(\Leftrightarrow BH\approx5,95\)
b,Ta có AB=BD(=R)
=>tam giác ABC cân tại A
mà AH là đường cao => AH cũng là tia phân giác BAD hay AC là tia p/g góc BAD
c) xét tam giác ABC và tam giác ADC có :
AB=AD(=R)
góc A1 = góc A2 (do AC là tia p/g)
AC chung
=> tam giác ABC= tam giác ADC (c-g-c)
=> góc B =góc D (=90 độ) => \(AD\perp DC\)=> DC là tiếp tuyến (A:AB)
HÌNH BẠN TỰ VẼ NHÉ!
ΔABC vuông tại B, áp dụng hệ thức lượng trong tam giác vuông ta có :
\(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BC^2}\Rightarrow BH=\sqrt{\frac{\left(AB\cdot BC\right)^2}{AB^2+BC^2}}=7,2\left(cm\right)\)
a) Xét ΔHBA có ^AHB = 900 ( BH ⊥ AC ) => ΔHBA vuông tại H
Khi đó ta có : \(\sin A=\frac{BH}{AB}=\frac{4}{5};\cos A=\frac{AH}{AB}=\frac{\sqrt{AB^2-BH^2}}{AB}=\frac{3}{5};\tan A=\frac{BH}{AH}=\frac{BH}{\sqrt{AB^2-BH^2}}=\frac{4}{3}\)
(bonus cho cotgA) : \(\cot A=\frac{AH}{BH}=\frac{\sqrt{AB^2-BH^2}}{BH}=\frac{3}{4}\)
b) Vì ΔHBA vuông tại H (cmt) => ^A + ^ABH = 900
Khi đó : \(\sin\widehat{ABH}=\cos A=\frac{3}{5};\cos\widehat{ABH}=\sin A=\frac{4}{5};\tan\widehat{ABH}=\cot A=\frac{3}{4};\cot\widehat{ABH}=\tan A=\frac{4}{3}\)