K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB<AC

nên BD<CD

b: AB<AC
=>góc B>góc C

góc ADB=góc C+góc CAD

góc ADC=góc B+góc BAD

mà góc C<góc B và góc CAD=góc BAD

nên góc ADB<góc ADC

18 tháng 4 2021

a/ Xét tg ABD và tg EBD có:

BD chung

AB = BE (gt)

góc ABD = góc EBD ( BD là pg góc B)

=>  tg ABD = tg EBD (c-g-c)

=> \(\left\{{}\begin{matrix}\text{AD = DE (2 cặp cạnh tương ứng)}\\\text{góc BAD = góc BED (2 cặp góc tương ứng)}\end{matrix}\right.\)

mà góc BAD = 90 ( tg ABC vuông tại A)

=> góc BED = 90

=> DE vuông góc BC

 

26 tháng 12 2021

ko bít

18 tháng 4 2021

a) Ta có: ˆABD+ˆABC=1800ABD^+ABC^=1800(hai góc kề bù)

ˆACE+ˆACB=1800ACE^+ACB^=1800(hai góc kề bù)

mà ˆABC=ˆACBABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)

nên ˆABD=ˆACEABD^=ACE^

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

ˆABD=ˆACEABD^=ACE^(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Ta có: AD=AE(cmt)

nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MD=ME(M là trung điểm của DE)

nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của DE

AMDE⇔AM⊥DE

hay AMBCAM⊥BC(đpcm)

26 tháng 2 2018

a) xét 2 tam giác vuông ABM VÀ ACM, có: 

AB=AC         ( ABC CÂN)

góc b = góc c  (___nt____)

BM=CM ( BD=EC; DM=ME)

=> TAM GIÁC ABM = T/GIÁC ACM

=>góc amb = góc amc (2 góc tuog ứng)

mà amb và amc là 2 góc kề bù 

=> amb = amc = 90 độ hay am vuông góc với bc

b) ta có ab = ac vì t/giác abc cân tại a

xét t/giác adm và t/giác ame, có

am chung

góc amd=góc ame (cmt)

dm=me ( gt)

=> t/giác ADM = t/giác AME

=> AD=AE ( 2 cạnh tương ứng )

18 tháng 8 2019

A B D M E C

a, \(\Delta AMB=\Delta AMC(c.c.c)\Rightarrow\widehat{AMB}=\widehat{AMC}\)

Ta lại có : \(\widehat{AMB}+\widehat{AMC}=180^0\)=> \(\widehat{AMB}=90^0\)

Vậy \(AM\perp BC\)

b, Hình chiếu MD = ME nên đường xiên AD = AE . Hình chiếu MD < MB nên đường xiên AD < AB . Ta có : AD < AB = AC