Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)Xét tam giác ABD và EBD
DB chung
\(\widehat{EBD}=\widehat{DBA}\)
AB=AE
=> tam giác ABD = tam giác EBD
B)DE=AD
DE\(⊥\)BC
Xét tam giác vuông DEC và DAM
\(\widehat{CDE}=\widehat{MDA}\)
AD=DE
=> tam giác ADM = tam giác EDC => CE =AM
C) MÌNH KO BIẾT
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
đố các bạn
bé kia chăn vịt khác thường
buộc đi cho được chẵn hàng mới ưa
hàng 2 xếp thấy chưa vừa,
hàng 3 xếp vẫn còn thừa 1 con,
hàng 4 xếp vẫn chưa tròn,
hàng 5 xếp thiếu 1 con mới đầy
xếp thành hàng 7, đẹp thay!
vịt bao nhiêu ? tính được ngay mới tài !
a, xét tam giác ABD và tam giác EBD có: BD chung
góc ABD = góc EBD do BD là pg của góc ABC (gt)
AB = BE (gt)
=> tam giác ABD = tam giác EBD (c-g-c)
b, tam giác ABD = tam giác EBD (câu a)
=> góc DAB = góc DEB (đn)
mà góc DAB = 90
=> góc DEB = 90
tam giác ABD = tam giác EBD => DA = DE
xét tam giác MDA và tam giác CDE có : góc DAM = góc DEC = 90
goc MDA = góc CDE (đối đỉnh)
=> tam giác MDA = tam giác CDE (cgv-gnk)
a) Xét: tam giác ABD và tam giác EBD có:
.AB= BE (giả thiết)
.góc B1= góc B2 (giả thiết)
.BD cạnh chung
suy ra: tam giác ABD= tam giác EBD (c-g-c)
b) Xét: tam giác ADM vuông tại A và tam giác CDE vuông tại E có:
.MD=ME ( giả thiết)
.góc D1= gócD2 (đối đỉnh)
suy ra: tam giác ADM= tam giác EBD ( cạnh huyền- góc nhọn)
Ta có : tam giác ADM= tam giác EBD (cmt)
suy ra:EC= AM (2 cạnh tương ứng)
c) Xét: tam giác AEC vuông tại A và tam giác EAM vuông tại E có:
.AE=EM (giả thiết)
. góc C= góc M (giả thiết)
suy ra : tam giác AEC= tam giác EAM (c-h-g-n)
Ta có: tam giác AEC= tam giác EAM (cmt)
suy ra: góc AEC = góc EAM( 2 góc tương ứng)
Cho tam giác ABC vuông tại A. tia phân giác của góc ABC cắt AC tại D. lấy E trên cạnh BC sao cho BE = AB.
a) Chứng minh :tan giác ABD = tam giác EBD.
b) Tia ED cắt BA tại M. chứng minh : EC = AM
c) Nối AE. Chứng minh : góc AEC = góc EAM
b,VÌ \(\Delta ABD=\Delta EBD\)nên
AD=DE ( hai cạnh tương ứng)
Xét \(\Delta MAD\)và \(\Delta DEC\)có:
\(\widehat{MAD}=\widehat{DEC}=90^o\)
AD=DE (cmt)
\(\widehat{ADM}=\widehat{ADC}\)( 2 gíc đối đỉnh)
=> AM=EC( hai cạn tương ứng ) (đpcm)