Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có:
M là trung điểm AB (gt)
N là trung điểm AB (gt)
=> MN là đường trung bình tam giác ABC
=> MN // BC và MN = 1/2 BC
Lâu chưa giải hình ^^
Chúng tôi không biết phải làm thế nào.Các bạn làm ơn giúp mình với.Mình cảm ơn các bạn nhiều
Xét \(\Delta MBE\)và \(\Delta MAE\)ta có :
\(ME\): cạnh chung (1)
Góc \(MEB=MEA=90\)độ (2)
\(MB=MA\left(GT\right)\) (3)
Từ (1) ; (2) và (3) => \(\Delta MBE=\Delta MAE\)(cạnh-góc-cạnh)
\(\Rightarrow MB=MA\)( cặp cạnh tương ứng)
b) Áp dụng định lí Py-ta-go cho tam giác vuông BAC có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow8^2+6^2=BC^2\)
\(\Rightarrow64+36=BC^2\)
\(\Rightarrow100=BC^2\)
\(\Rightarrow\)BC= Căn 100
\(\Rightarrow BC=10\)
Vậy BC = 10 cm .
Xét ΔAMN và ΔCDN có
MN=ND(gt)
\(\widehat{MNA}=\widehat{DNC}\) (đối đỉnh)
AN=CN(gt)
=>ΔAMN=ΔCDN (c.g.c)
=>AM=CD
Mà AM=MB(gt)
=>CD=MB
b) Vì AM=MB(gt);AN=NC(gt)
=>MN là đường trung bình của ΔABC
=> \(MN=\frac{1}{2}BC\)
A B C H E I M N x
a) Vẽ tia đối của BC là Bx. Gọi giao điểm của BI và CE là M. CE giao AB tại N.
\(\Delta\)ABC cân tại A. H là trung điểm của BC => AH là đường cao của \(\Delta\)ABC => AH\(⊥\)BC.
Ta có: ^ABH+^EBx=1800-^ABE=900 (1)
\(\Delta\)AHB vuông tại H => ^ABH+^BAH=900 (2)
Từ (1) và (2) => ^EBx=^BAH => 1800-^EBx=1800-^BAH => ^EBC=^BAI
Xét \(\Delta\)ABI và \(\Delta\)BEC:
AB=BE
^BAI=^EBC => \(\Delta\)ABI=\(\Delta\)BEC (c.g.c) (đpcm)
AI=BC
=> ^BEC=^ABI (2 góc tương ứng) hay ^BEN=^NBM.
\(\Delta\)EBN vuông tại B => ^BEN+^BNE=900. Thay ^BEN=^NBM, ta được:
^NBM+^BNE=900 hay ^NBM+^BNM=900. Xét \(\Delta\)BMN có:
^NBM+^BNM=900 => ^BMN=900 => BI\(⊥\)CE tại M (đpcm).
Giúp mình với