K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

10 tháng 11 2019

a) Ta có: MB = MC (giả thiết)

DA = DB (Giả thiết)

⇒ DM là đường trung bình của Δ ABC

⇒ DM//AC

Mặt khác ABC vuông tại A

⇒ AC ⊥ AB ⇒ DM ⊥ AB ⇒ DE ⊥ AB (*)

E là điểm đối xứng với M qua D ⇒ DM = DE (**)

Từ (*) và (**) ta suy ra: Điểm E đối xứng với M qua AB

b) Ta có AB ⊥ EM và DE = DM, DA = DB

⇒ Tứ giác AEBM là hình thoi

⇒ AE//BM mà BM = MC ⇒ AE//MC và AE = MC

⇒ tứ giác AEMC là hình bình hàng

c) Ta có BC = 4 (cm) ⇒ BM = BC/2 = 2(cm)

Chu vi hình thoi ABEM là P = 4BM = 8 (cm)

d) Hình thoi AEBM là hình vuông khi góc ∠AMB = 900

⇒ AM ⊥ BC

Mặt khác: AM là trung tuyến của tam giác vuông ABC

Suy ra: Δ ABC vuông cân tại A

Điều kiện: Δ ABC vuông cân tại A

21 tháng 12 2016

A) Xét tam giác MDA và tam giác EDB có :
MD=DE( GT)

DA=DB( GT)

góc EDB=góc MDA ( góc đối đỉnh)

vậy tam giác MDA = tam giác EDB( C-G-C)

suy ra : DE=MA( hai canh tương ứng)

 chứng minh tương tự ta lại có : tam giác MDB= tam giác EDA 

suy ra : MB=AE( hai canh tương ứng)

mà ta lại có AM là đường trung tuyến ứng với cạnh huyền vậy AM=1/2BC=MB

vậy : MA=MB=AE=BE

suy ra : tứ giác AEBM là hình thoy

B) Xét tứ giác CMEA có :

MB song song với AE và bằng MB =AE ( theo phần a)

mà ta lại có : MC = MB

vậy AE song song với MC

AE=MC( chứng minh trên)

vậy tứ giác CMEA là HBH

 Mà I lại là trung điểm của đường chéo AM 

vậy I cũng là trung điểm của đường chéo CE

suy ra :  C,i.E thẳng hàng

C) tam giác ABC phải là tam giác vuông cân thì tứ giác AEBM mới là hình vuông 

 bở lẽ khi tam tam giác ABC vuuong cân thì ta sẽ có góc CBA = 45 độ

mà BA lại là đường phân giác của góc MBE ( theo phần a  tứ giác AEMB là hình thoi)

 nên góc MBE =45*2=90độ

mà phần a ta lại có  tứ giác AMBE là hình thoi 

vậy tứ giác AMBE là hình vuông

mình làm xong rồi nhớ mình nhé mình cảm ơn ^_^

câu a) bn ấy lm hơi dài nên mk có cách khác

c/m EBMA là hbh (2 đường chéo cắt tại trung điểm mỗi đường)

mà có AB vuông góc EM (t/c đối xứng)

vậy AEBM là hình thoi

13 tháng 12 2017

a) dien h tam giac ABC la :S ABC =1/2 AB * AC = 1/2* 6 *8 = 24(m2)

b) Tu giac AIHK co :

     goc AIH = goc HKA = goc KAI = 90 do

    suy ra AIKH la hinh chu nhat

c)Tu giac AHMD co :

   AK = KM

   KH=KD

suy ra AHMD la hinh binh hanh

          ma goc HKC = 90 do

suy ra AHMD la hinh thoi

c) Trong tam AHC vuong tai H co :

    KH la trung tuyen        

    suy ra KH = 1/2 AC 

 Chung minh tuong tu ta co : HI = 1/2 AB 

De IHKA la hinh vuong thi IH = HK

ma IH = 1/2 AB

     KH = 1/2 AC

suy ra AB = AC 

suy ra tam giac ABC can

 ma tam giac ABC vuong(gt)

suy ra tam giac ABC vuong can

Vay tam giac ABC vuong can thi AIHK la hinh vuong

29 tháng 7 2018

AD=BD

BM=MC

=> MD là đường trung bỉnh tam giác BAC

=>MD//AD

=>góc BDM= góc BAC=90^0

=> MD vuông góc với AB

tích mình đi

ai tích mình

mình tích lại

thanks

29 tháng 5 2017

a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)

Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.

DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)

Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.

b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.

c) Chu vi tứ giác AEBM là 4BM = 8 (cm)

d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.

3 tháng 1 2018

a)    Tứ giác  \(AMDN\)  có  \(\widehat{A}=\widehat{M}=\widehat{N}=90^0\)

nên  \(AMDN\) là hình chữ  nhật

b)   MK SỬA LẠI ĐỀ NHA:  CM AEBD LÀ HÌNH THOI

\(\Delta ABC\)có  \(DB=DC;\)\(DM\)// \(AC\)( cùng \(\perp AB\))

\(\Rightarrow\)\(MA=MB\)

Tứ giác  \(AEBD\)có  \(MA=MB;\)\(ME=MD\)

nên  \(AEBD\)là hình bình hành

mà  \(AB\perp ED\)

nên  \(AEBD\)là hình thoi