Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Cho tam giác ABC đều, M bất kì thuộc BC. Qua M kẻ đường song song với AC cắt AB ở D. Qua M kẻ đường song song với AB cắt AC ở E, I là trung điểm AM
a) Cm D, I, E thẳng hàng
b) khi M di chuyển trên BC thì I di chuyển trên đường nào
Bài 2
Cho tam giác ABC vuông tại A. Gọi N là điểm đối xứng của A qua trung điểm M của BC
a) tứ giác ACNB là hình gì
b)1 điểm H chạy trên BM, P là điểm đối xứng của A qua H, P chạy trên đường nào
c) Xác định vị trí H trên BM để AP ngắn nhất
d) Xác định vị trí chủa H trên BM để tam giác anP cân tại N
dài quá bạn ơi
DMA = MAN = AND = 900
=> AMDN là hình chữ nhật
=> AD = MN
I là trung điểm của MN và AD
=> HI là đường trung tuyến của tam giác HAD vuông tại H
=> HI = AD/2
mà AD = MN (chứng minh trên)
=> HI = MN/2
mà HI là đường trung tuyến của tam giác HMN (I là trung điểm của MN)
=> Tam giác HMN vuông tại H
=> MHN = 900
Kẻ IK _I_ HD
mà AH _I_ HD
=> IK // AH
mà I là trung điểm của AD (chứng minh trên)
=> K là trung điểm của HD
=> IK là đường trung bình của tam giác DAH
=> IK = AH/2
Điểm I cách đoạn thẳng BC 1 khoảng cố định bằng 1 nửa AH không đổi
=> Điểm I di chuyển trên đường thẳng song song với BC và cách BC 1 khoảng bằng nửa AH
Chúc bạn học tốt *(^o^)*
Giải thích các bước giải:
a. Vì DM⊥AB⇒ˆDMA=90oDM⊥AB⇒DMA^=90o,
DN⊥AC⇒ˆDNA=90oDN⊥AC⇒DNA^=90o,
ΔABC⊥A⇒ˆA=90oΔABC⊥A⇒A^=90o
⇒◊AMDN⇒◊AMDN là hình chữ nhật.
Áp dụng định lý Pitago vào ΔAMD⊥M,AM=3cm,AD=5cmΔAMD⊥M,AM=3cm,AD=5cm có:
MD=√AD2−AM2=4cmMD=AD2−AM2=4cm
⇒SAMDN=AM.DM=12cm2⇒SAMDN=AM.DM=12cm2
b. Gọi AD∩MN=E⇒EAD∩MN=E⇒E là trung điểm AD, MN
Mà AH⊥BCAH⊥BC
ΔAHD⊥H,EΔAHD⊥H,E là trung điểm cạnh huyền ADAD
⇒EH=EA=ED=EM=EN⇒EH=EA=ED=EM=EN
⇒ΔMHN⇒ΔMHN vuông tại HH
⇒ˆMHN=90o⇒MHN^=90o
c. Gọi G,IG,I là trung điểm AB,ACAB,AC suy ra GIGI là đường trung bình của ΔABCΔABC
⇒GI//BC⇒GI//BC
⇒GE,EI⇒GE,EI là đường trung bình ΔABD,ΔADC⇒GE//BD,EI//DCΔABD,ΔADC⇒GE//BD,EI//DC hay GE,EI//BCGE,EI//BC
⇒E∈GI⇒E∈GI
⇒⇒ Trung điểm EE của MNMN di chuyển trên đường trung bình ΔABCΔABC.