Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: H và I đối xứng nhau qua AB
nên AB là đường trung trực của HI
Suy ra: AH=AI và BH=BI
Xét ΔAHI có AH=AI
nên ΔAHI cân tại A
mà AB là đường trung trực ứng với cạnh đáy HI
nên AB là tia phân giác của ˆHAIHAI^
Ta có: H và K đối xứng nhau qua AC
nên AC là đường trung trực của HK
Suy ra: AH=AK và CH=CK
Xét ΔAKH có AK=AH
nên ΔAKH cân tại A
mà AC là đường trung trực ứng với cạnh đáy HK
nên AC là tia phân giác của ˆKAHKAH^
Ta có: ˆKAH+ˆIAH=ˆKAIKAH^+IAH^=KAI^
⇔ˆKAI=2⋅(ˆBAH+ˆCAH)⇔KAI^=2⋅(BAH^+CAH^)
⇔ˆKAI=2⋅900=1800⇔KAI^=2⋅900=1800
Do đó: K,A,I thẳng hàng
a: Ta có: H và I đối xứng nhau qua AB
nên AB là đường trung trực của HI
Suy ra: AH=AI và BH=BI
Xét ΔAHI có AH=AI
nên ΔAHI cân tại A
mà AB là đường trung trực ứng với cạnh đáy HI
nên AB là tia phân giác của \(\widehat{HAI}\)
Ta có: H và K đối xứng nhau qua AC
nên AC là đường trung trực của HK
Suy ra: AH=AK và CH=CK
Xét ΔAKH có AK=AH
nên ΔAKH cân tại A
mà AC là đường trung trực ứng với cạnh đáy HK
nên AC là tia phân giác của \(\widehat{KAH}\)
Ta có: \(\widehat{KAH}+\widehat{IAH}=\widehat{KAI}\)
\(\Leftrightarrow\widehat{KAI}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)
\(\Leftrightarrow\widehat{KAI}=2\cdot90^0=180^0\)
Do đó: K,A,I thẳng hàng
a: Ta có: H và I đối xứng nhau qua AB
nên AB là đường trung trực của HI
=>AH=AI
=>ΔAHI cân tại A
mà AB là đường cao
nên AB là phân giáccủa góc HAI(1)
Ta có: H và K đối xứng nhau qua AC
nên AC là đường trung trực của HK
=>AH=AK
=>ΔAHK cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAK(2)
Từ (1) và (2) suy ra \(\widehat{KAI}=2\cdot\widehat{BAC}=180^0\)
hay K,A,I thẳng hàng
b: Xét ΔAHB và ΔAIB có
AH=AI
\(\widehat{HAB}=\widehat{IAB}\)
AB chung
Do đó: ΔAHB=ΔAIB
Suy ra: \(\widehat{AHB}=\widehat{AIB}=90^0\)
hay BI\(\perp\)KI(3)
Xét ΔAHC và ΔAKC có
AH=AK
\(\widehat{HAC}=\widehat{KAC}\)
AC chung
Do đó: ΔAHC=ΔAKC
Suy ra: \(\widehat{AHC}=\widehat{AKC}=90^0\)
hay CK\(\perp\)KI(4)
Từ (3) và (4) suy ra BI//CK
hay BIKC là hình thang
c: IK=KA+AI
nên IK=2AH
a: Xét ΔABC có AI/AB=AK/AC
nên IK//BC
=>BIKC là hình thang
b: Xét tứ giác AHBM có
I là trung điểm chung của AB và HM
nên AHBM là hình bình hành
mà góc AHB=90 độ
nên AHBM là hình chữ nhật
c: Xét tứ giác ANHI có
O là trung điểm chung của AH và NI
AH vuông góc với NI
Do đó: ANHI là hình thoi
a) Tứ giác BHCkBHCk có 2 đường chéo BCBC và HKHK cắt nhau tại trung điểm MM của mỗi đường
⇒BHCK⇒BHCK là hình bình hành.
b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC
Mà HC⊥ABHC⊥AB
⇒BK⊥AB⇒BK⊥AB (đpcm)
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BCHD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
...